• IDA逆向常用宏定义


    /*

    This file contains definitions used by the Hex-Rays decompiler output.
    It has type definitions and convenience macros to make the
    output more readable.

    Copyright (c) 2007-2011 Hex-Rays

    */

    #if defined(__GNUC__)
    typedef long long ll;
    typedef unsigned long long ull;
    #define __int64 long long
    #define __int32 int
    #define __int16 short
    #define __int8 char
    #define MAKELL(num) num ## LL
    #define FMT_64 "ll"
    #elif defined(_MSC_VER)
    typedef __int64 ll;
    typedef unsigned __int64 ull;
    #define MAKELL(num) num ## i64
    #define FMT_64 "I64"
    #elif defined (__BORLANDC__)
    typedef __int64 ll;
    typedef unsigned __int64 ull;
    #define MAKELL(num) num ## i64
    #define FMT_64 "L"
    #else
    #error "unknown compiler"
    #endif
    typedef unsigned int uint;
    typedef unsigned char uchar;
    typedef unsigned short ushort;
    typedef unsigned long ulong;

    typedef char int8;
    typedef signed char sint8;
    typedef unsigned char uint8;
    typedef short int16;
    typedef signed short sint16;
    typedef unsigned short uint16;
    typedef int int32;
    typedef signed int sint32;
    typedef unsigned int uint32;
    typedef ll int64;
    typedef ll sint64;
    typedef ull uint64;

    // Partially defined types:
    #define _BYTE uint8
    #define _WORD uint16
    #define _DWORD uint32
    #define _QWORD uint64
    #if !defined(_MSC_VER)
    #define _LONGLONG __int128
    #endif

    #ifndef _WINDOWS_
    typedef int8 BYTE;
    typedef int16 WORD;
    typedef int32 DWORD;
    typedef int32 LONG;
    #endif
    typedef int64 QWORD;
    #ifndef __cplusplus
    typedef int bool; // we want to use bool in our C programs
    #endif

    // Some convenience macros to make partial accesses nicer
    // first unsigned macros:
    #define LOBYTE(x) (*((_BYTE*)&(x))) // low byte
    #define LOWORD(x) (*((_WORD*)&(x))) // low word
    #define LODWORD(x) (*((_DWORD*)&(x))) // low dword
    #define HIBYTE(x) (*((_BYTE*)&(x)+1))
    #define HIWORD(x) (*((_WORD*)&(x)+1))
    #define HIDWORD(x) (*((_DWORD*)&(x)+1))
    #define BYTEn(x, n) (*((_BYTE*)&(x)+n))
    #define WORDn(x, n) (*((_WORD*)&(x)+n))
    #define BYTE1(x) BYTEn(x, 1) // byte 1 (counting from 0)
    #define BYTE2(x) BYTEn(x, 2)
    #define BYTE3(x) BYTEn(x, 3)
    #define BYTE4(x) BYTEn(x, 4)
    #define BYTE5(x) BYTEn(x, 5)
    #define BYTE6(x) BYTEn(x, 6)
    #define BYTE7(x) BYTEn(x, 7)
    #define BYTE8(x) BYTEn(x, 8)
    #define BYTE9(x) BYTEn(x, 9)
    #define BYTE10(x) BYTEn(x, 10)
    #define BYTE11(x) BYTEn(x, 11)
    #define BYTE12(x) BYTEn(x, 12)
    #define BYTE13(x) BYTEn(x, 13)
    #define BYTE14(x) BYTEn(x, 14)
    #define BYTE15(x) BYTEn(x, 15)
    #define WORD1(x) WORDn(x, 1)
    #define WORD2(x) WORDn(x, 2) // third word of the object, unsigned
    #define WORD3(x) WORDn(x, 3)
    #define WORD4(x) WORDn(x, 4)
    #define WORD5(x) WORDn(x, 5)
    #define WORD6(x) WORDn(x, 6)
    #define WORD7(x) WORDn(x, 7)

    // now signed macros (the same but with sign extension)
    #define SLOBYTE(x) (*((int8*)&(x)))
    #define SLOWORD(x) (*((int16*)&(x)))
    #define SLODWORD(x) (*((int32*)&(x)))
    #define SHIBYTE(x) (*((int8*)&(x)+1))
    #define SHIWORD(x) (*((int16*)&(x)+1))
    #define SHIDWORD(x) (*((int32*)&(x)+1))
    #define SBYTEn(x, n) (*((int8*)&(x)+n))
    #define SWORDn(x, n) (*((int16*)&(x)+n))
    #define SBYTE1(x) SBYTEn(x, 1)
    #define SBYTE2(x) SBYTEn(x, 2)
    #define SBYTE3(x) SBYTEn(x, 3)
    #define SBYTE4(x) SBYTEn(x, 4)
    #define SBYTE5(x) SBYTEn(x, 5)
    #define SBYTE6(x) SBYTEn(x, 6)
    #define SBYTE7(x) SBYTEn(x, 7)
    #define SBYTE8(x) SBYTEn(x, 8)
    #define SBYTE9(x) SBYTEn(x, 9)
    #define SBYTE10(x) SBYTEn(x, 10)
    #define SBYTE11(x) SBYTEn(x, 11)
    #define SBYTE12(x) SBYTEn(x, 12)
    #define SBYTE13(x) SBYTEn(x, 13)
    #define SBYTE14(x) SBYTEn(x, 14)
    #define SBYTE15(x) SBYTEn(x, 15)
    #define SWORD1(x) SWORDn(x, 1)
    #define SWORD2(x) SWORDn(x, 2)
    #define SWORD3(x) SWORDn(x, 3)
    #define SWORD4(x) SWORDn(x, 4)
    #define SWORD5(x) SWORDn(x, 5)
    #define SWORD6(x) SWORDn(x, 6)
    #define SWORD7(x) SWORDn(x, 7)


    // Helper functions to represent some assembly instructions.

    #ifdef __cplusplus

    // Fill memory block with an integer value
    inline void memset32(void *ptr, uint32 value, int count)
    {
    uint32 *p = (uint32 *)ptr;
    for ( int i=0; i < count; i++ )
    *p++ = value;
    }

    // Generate a reference to pair of operands
    template<class T> int16 __PAIR__( int8 high, T low) { return ((( int16)high) << sizeof(high)*8) | uint8(low); }
    template<class T> int32 __PAIR__( int16 high, T low) { return ((( int32)high) << sizeof(high)*8) | uint16(low); }
    template<class T> int64 __PAIR__( int32 high, T low) { return ((( int64)high) << sizeof(high)*8) | uint32(low); }
    template<class T> uint16 __PAIR__(uint8 high, T low) { return (((uint16)high) << sizeof(high)*8) | uint8(low); }
    template<class T> uint32 __PAIR__(uint16 high, T low) { return (((uint32)high) << sizeof(high)*8) | uint16(low); }
    template<class T> uint64 __PAIR__(uint32 high, T low) { return (((uint64)high) << sizeof(high)*8) | uint32(low); }

    // rotate left
    template<class T> T __ROL__(T value, uint count)
    {
    const uint nbits = sizeof(T) * 8;
    count %= nbits;

    T high = value >> (nbits - count);
    value <<= count;
    value |= high;
    return value;
    }

    // rotate right
    template<class T> T __ROR__(T value, uint count)
    {
    const uint nbits = sizeof(T) * 8;
    count %= nbits;

    T low = value << (nbits - count);
    value >>= count;
    value |= low;
    return value;
    }

    // carry flag of left shift
    template<class T> int8 __MKCSHL__(T value, uint count)
    {
    const uint nbits = sizeof(T) * 8;
    count %= nbits;

    return (value >> (nbits-count)) & 1;
    }

    // carry flag of right shift
    template<class T> int8 __MKCSHR__(T value, uint count)
    {
    return (value >> (count-1)) & 1;
    }

    // sign flag
    template<class T> int8 __SETS__(T x)
    {
    if ( sizeof(T) == 1 )
    return int8(x) < 0;
    if ( sizeof(T) == 2 )
    return int16(x) < 0;
    if ( sizeof(T) == 4 )
    return int32(x) < 0;
    return int64(x) < 0;
    }

    // overflow flag of subtraction (x-y)
    template<class T, class U> int8 __OFSUB__(T x, U y)
    {
    if ( sizeof(T) < sizeof(U) )
    {
    U x2 = x;
    int8 sx = __SETS__(x2);
    return (sx ^ __SETS__(y)) & (sx ^ __SETS__(x2-y));
    }
    else
    {
    T y2 = y;
    int8 sx = __SETS__(x);
    return (sx ^ __SETS__(y2)) & (sx ^ __SETS__(x-y2));
    }
    }

    // overflow flag of addition (x+y)
    template<class T, class U> int8 __OFADD__(T x, U y)
    {
    if ( sizeof(T) < sizeof(U) )
    {
    U x2 = x;
    int8 sx = __SETS__(x2);
    return ((1 ^ sx) ^ __SETS__(y)) & (sx ^ __SETS__(x2+y));
    }
    else
    {
    T y2 = y;
    int8 sx = __SETS__(x);
    return ((1 ^ sx) ^ __SETS__(y2)) & (sx ^ __SETS__(x+y2));
    }
    }

    // carry flag of subtraction (x-y)
    template<class T, class U> int8 __CFSUB__(T x, U y)
    {
    int size = sizeof(T) > sizeof(U) ? sizeof(T) : sizeof(U);
    if ( size == 1 )
    return uint8(x) < uint8(y);
    if ( size == 2 )
    return uint16(x) < uint16(y);
    if ( size == 4 )
    return uint32(x) < uint32(y);
    return uint64(x) < uint64(y);
    }

    // carry flag of addition (x+y)
    template<class T, class U> int8 __CFADD__(T x, U y)
    {
    int size = sizeof(T) > sizeof(U) ? sizeof(T) : sizeof(U);
    if ( size == 1 )
    return uint8(x) > uint8(x+y);
    if ( size == 2 )
    return uint16(x) > uint16(x+y);
    if ( size == 4 )
    return uint32(x) > uint32(x+y);
    return uint64(x) > uint64(x+y);
    }

    #else
    // The following definition is not quite correct because it always returns
    // uint64. The above C++ functions are good, though.
    #define __PAIR__(high, low) (((uint64)(high)<<sizeof(high)*8) | low)
    // For C, we just provide macros, they are not quite correct.
    #define __ROL__(x, y) __rotl__(x, y) // Rotate left
    #define __ROR__(x, y) __rotr__(x, y) // Rotate right
    #define __CFSHL__(x, y) invalid_operation // Generate carry flag for (x<<y)
    #define __CFSHR__(x, y) invalid_operation // Generate carry flag for (x>>y)
    #define __CFADD__(x, y) invalid_operation // Generate carry flag for (x+y)
    #define __CFSUB__(x, y) invalid_operation // Generate carry flag for (x-y)
    #define __OFADD__(x, y) invalid_operation // Generate overflow flag for (x+y)
    #define __OFSUB__(x, y) invalid_operation // Generate overflow flag for (x-y)
    #endif

    // No definition for rcl/rcr because the carry flag is unknown
    #define __RCL__(x, y) invalid_operation // Rotate left thru carry
    #define __RCR__(x, y) invalid_operation // Rotate right thru carry
    #define __MKCRCL__(x, y) invalid_operation // Generate carry flag for a RCL
    #define __MKCRCR__(x, y) invalid_operation // Generate carry flag for a RCR
    #define __SETP__(x, y) invalid_operation // Generate parity flag for (x-y)

    // In the decompilation listing there are some objects declarared as _UNKNOWN
    // because we could not determine their types. Since the C compiler does not
    // accept void item declarations, we replace them by anything of our choice,
    // for example a char:

    #define _UNKNOWN char

  • 相关阅读:
    C++ 类或函数导出lib的两种方式
    Qt 中文乱码原因以及解决方法
    AStyle Clion中配置代码格式化工具(附:博主最满意格式)
    nltk中meteor_score的计算,报错
    Ubuntu20重装nvidia驱动
    No input file specified,php+Nginx,报错处理
    「cocos2dx」动画创建笔记
    「cocos2dx」物理引擎学习之box2D(1)
    golang_listen3_time
    face_to_face
  • 原文地址:https://www.cnblogs.com/CimeLi/p/12850808.html
Copyright © 2020-2023  润新知