题意
给一颗树,从1节点出发,走每条边的概率相同且耗时为1,求每个点第一次被遍历到的期望时间((t_1=1))
思路
在树上只有两种移动方式:从儿子到父亲,从父亲到儿子
假设从(rt)走到(v)的期望代价为(dow_i),从(i)走到(rt)的期望代价为(val_i)
假设从(rt)转移到(v),(rt)的度数为(k),(rt)的父亲为(fa),则:
[dow_v = frac{1}{k} + sum_{son}^{son
eq v} { frac{1}{k} imes (1+val_{son}+dow_v)} + frac{1}{k} imes (1+dow_{fa}+dow_v)
]
意思是:要么从(rt)到(v)一步到位,要么有(frac{1}{k})的概率走其他点再走回来重新计算期望
化简得:
[dow_v = k + sum_{son}^{son
eq v} {val_{son} + dow_{fa}}
]
这里还有个(val)不知道,所以要先计算它:
[val_{rt} = sum_{son} {frac{1}{k} + frac{1}{k} imes (1+val_{son}+val_{rt})}
]
意思是:要么从(v)到(rt)一步到位,要么走一步到儿子走回来在重新计算期望
化简得:
[val_{rt} = k + sum_{son} {val_{son}}
]
一遍(dfs)自底向上求(val),再一遍(dfs)从上到下求(dow),一个点的答案即为(dow)的前缀和
Code
#include<bits/stdc++.h>
#define N 100005
#define Min(x,y) ((x)<(y)?(x):(y))
#define Max(x,y) ((x)>(y)?(x):(y))
using namespace std;
int n,rd[N],ok=1;
double val[N],dow[N],f[N];
struct Edge
{
int next,to;
}edge[N<<1];int head[N],cnt=1;
void add_edge(int from,int to)
{
edge[++cnt].next=head[from];
edge[cnt].to=to;
head[from]=cnt;
}
template <class T>
void read(T &x)
{
char c; int sign=1;
while((c=getchar())>'9'||c<'0') if(c=='-') sign=-1; x=c-48;
while((c=getchar())>='0'&&c<='9') x=(x<<1)+(x<<3)+c-48; x*=sign;
}
void dfs1(int rt,int fa)
{
val[rt]=rd[rt];
for(int i=head[rt];i;i=edge[i].next)
{
int v=edge[i].to;
if(v==fa) continue;
dfs1(v,rt);
val[rt]+=val[v];
}
}
void dfs(int rt,int fa)
{
double sumval=0;
for(int i=head[rt];i;i=edge[i].next)
{
int v=edge[i].to;
if(v==fa) continue;
sumval+=val[v];
}
for(int i=head[rt];i;i=edge[i].next)
{
int v=edge[i].to;
if(v==fa) continue;
f[v]=f[rt]+rd[rt]+dow[rt]+sumval-val[v];
dow[v]=f[v]-f[rt];
dfs(v,rt);
}
}
void solve()
{
dfs1(1,0);
f[1]=1.0; dow[1]=0;
dfs(1,0);
for(int i=1;i<=n;++i) printf("%.3lf
",f[i]);
}
int main()
{
freopen("tree.in","r",stdin);
freopen("tree.out","w",stdout);
read(n);
for(int i=1;i<n;++i)
{
int x,y;
read(x);read(y);
add_edge(x,y);
add_edge(y,x);
++rd[x];++rd[y];
}
solve();
return 0;
}