• Python 利用循环画散点图


     1 import pandas as pd
     2 data = pd.read_csv('D:/suning/iris.csv')
     3 data = data.iloc[:,1:]
     4 
     5 ###2维散点图
     6 import matplotlib.pyplot as plt
     7 
     8 k=[
     9 'Sepal.Length',
    10 'Sepal.Width',
    11 'Petal.Length',
    12 'Petal.Width',]
    13 for i in k:
    14     for m in k:
    15         if i != m:
    16             plt.figure(figsize=(10,10))
    17             result =data.Species.unique()
    18             plt.scatter(data.loc[data.Species == result[2], i], data.loc[data.Species == result[2],m], s = 35, marker='*', c ='g')
    19             plt.scatter(data.loc[data.Species == result[1], i], data.loc[data.Species == result[1],m], s = 35, marker='+', c ='r')
    20             plt.scatter(data.loc[data.Species == result[0], i], data.loc[data.Species == result[0],m], s = 35, marker='o',c = 'y')
    21             # 添加轴标签和标题
    22             plt.title( '')
    23             plt.xlabel(i)
    24             plt.ylabel(m)
    25             # 去除图边框的顶部刻度和右边刻度
    26             #lt.tick_params(top = 'off', right = 'off')
    27             # 添加图例plt.legend(loc = 'upper left')
    28             plt.show()
    29 
    30 ####三维散点图
    31 import numpy as np
    32 import matplotlib.pyplot as plt
    33 from mpl_toolkits.mplot3d import Axes3D
    34 
    35 k=[
    36 'Sepal.Length',
    37 'Sepal.Width',
    38 'Petal.Length',
    39 'Petal.Width',]
    40 for i in k:
    41     for m in k:
    42         for z in k:
    43             if i != m and m!=z and 1!=z:  
    44                 plt.figure(figsize=(10,10))
    45                 result = data.Species.unique() 
    46                 ax = plt.subplot(111, projection='3d')  # 创建一个三维的绘图工程
    47                 ax.scatter(data.loc[data.Species == result[2], i], data.loc[data.Species == result[2], m], data.loc[data.Species == result[2], z], c='g',marker='*')  # 绘制数据点
    48                 ax.scatter(data.loc[data.Species == result[1], i], data.loc[data.Species == result[1], m], data.loc[data.Species == result[1], z], c='r',marker='+')  # 绘制数据点
    49                 ax.scatter(data.loc[data.Species == result[0], i], data.loc[data.Species == result[0], m], data.loc[data.Species == result[0], z], c='y',marker='o')  # 绘制数据点
    50                 ax.set_zlabel(z)  # 坐标轴
    51                 ax.set_ylabel(m)
    52                 ax.set_xlabel(i)
    53                 plt.show()
    54 
  • 相关阅读:
    bert中的为什么
    ROS+Ubuntu+VSCode
    致我成为社畜的第一年
    SQL实战 11.高频SQL面试题 课程订单分析系列
    SQL实战 10.高频SQL面试题 考试分数系列
    SQL实战 9.高频SQL面试题 网站访客最近登录日期系列
    SQL实战 8.异常的邮件概率 sum、count、round和case when结合
    SQL实战 7刷题通过的题目排名 row_number、 dense_rank 和rank区别
    SQL实战 6.对于employees表中,给出奇数行的first_name
    SQL实战 5.统计salary的累计和running_total
  • 原文地址:https://www.cnblogs.com/Christina-Notebook/p/10095631.html
Copyright © 2020-2023  润新知