罗马数字包含以下七种字符: I, V, X, L,C,D 和 M。
字符 数值
I 1
V 5
X 10
L 50
C 100
D 500
M 1000
例如, 罗马数字 2 写做 II ,即为两个并列的 1。12 写做 XII ,即为 X + II 。 27 写做 XXVII, 即为 XX + V + II 。
通常情况下,罗马数字中小的数字在大的数字的右边。但也存在特例,例如 4 不写做 IIII,而是 IV。数字 1 在数字 5 的左边,所表示的数等于大数 5 减小数 1 得到的数值 4 。同样地,数字 9 表示为 IX。这个特殊的规则只适用于以下六种情况:
I 可以放在 V (5) 和 X (10) 的左边,来表示 4 和 9。
X 可以放在 L (50) 和 C (100) 的左边,来表示 40 和 90。
C 可以放在 D (500) 和 M (1000) 的左边,来表示 400 和 900。
给定一个整数,将其转为罗马数字。输入确保在 1 到 3999 的范围内。
示例 1:
输入: 3
输出: "III"
示例 2:
输入: 4
输出: "IV"
示例 3:
输入: 9
输出: "IX"
示例 4:
输入: 58
输出: "LVIII"
解释: L = 50, V = 5, III = 3.
示例 5:
输入: 1994
输出: "MCMXCIV"
解释: M = 1000, CM = 900, XC = 90, IV = 4.
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/integer-to-roman
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
这道题考察点在于贪心算法,实际不难。因此什么是贪心算法就成了问题的关键。(下面的wiki出处)
贪心算法(英语:greedy algorithm),又称贪婪算法,是一种在每一步选择中都采取在当前状态下最好或最优(即最有利)的选择,从而希望导致结果是最好或最优的算法。[1]比如在旅行推销员问题中,如果旅行员每次都选择最近的城市,那这就是一种贪心算法。
贪心算法在有最优子结构的问题中尤为有效。最优子结构的意思是局部最优解能决定全局最优解。简单地说,问题能够分解成子问题来解决,子问题的最优解能递推到最终问题的最优解。
贪心算法与动态规划的不同在于它对每个子问题的解决方案都做出选择,不能回退。动态规划则会保存以前的运算结果,并根据以前的结果对当前进行选择,有回退功能。
贪心法可以解决一些最优化问题,如:求图中的最小生成树、求哈夫曼编码……对于其他问题,贪心法一般不能得到我们所要求的答案。一旦一个问题可以通过贪心法来解决,那么贪心法一般是解决这个问题的最好办法。由于贪心法的高效性以及其所求得的答案比较接近最优结果,贪心法也可以用作辅助算法或者直接解决一些要求结果不特别精确的问题。
细节
- 创建数学模型来描述问题。
- 把求解的问题分成若干个子问题。
- 对每一子问题求解,得到子问题的局部最优解。
- 把子问题的解局部最优解合成原来解问题的一个解。
实现该算法的过程:
从问题的某一初始解出发;while 能朝给定总目标前进一步 do,求出可行解的一个解元素;
最后,由所有解元素组合成问题的一个可行解。
再举个日常的例子:我们买东西13块的话,我们手里有n个不同价值的人民币,当然最优解(最简单的方法)就是一张10块和3张一块,还有其他方式吗?很多。
贪心算法实现
public class Solution { public String intToRoman(int num) { // 把阿拉伯数字与罗马数字可能出现的所有情况和对应关系,放在两个数组中 // 并且按照阿拉伯数字的大小降序排列,这是贪心选择思想 int[] nums = {1000, 900, 500, 400, 100, 90, 50, 40, 10, 9, 5, 4, 1}; String[] romans = {"M", "CM", "D", "CD", "C", "XC", "L", "XL", "X", "IX", "V", "IV", "I"}; StringBuilder stringBuilder = new StringBuilder(); int index = 0; while (index < 13) { // 特别注意:这里是等号 while (num >= nums[index]) { // 注意:这里是等于号,表示尽量使用大的"面值" stringBuilder.append(romans[index]); num -= nums[index]; } index++; } return stringBuilder.toString(); } }