• 01 字典树


    简介

    ( extbf{01trie}) 就是把整数的二进制表达式当作字符串,按照从高位到低位的顺序,挂载在字典树上,每个节点有两个孩子,分别是 (0, 1),从而形成一棵二叉树,常用来处理异或问题

    例如将一个数组 ([1, 2, 3]) 挂在 ( extbf{01trie}) 上,便得到如下所示的一棵二叉树

    性质

    由于 ( extbf{01trie}) 是一棵二叉树,且最大深度取决于挂载值的大小,设挂载最大值为 (n),那么一次查询前缀的过程便可以在 (O(log n)) 时间完成

    例题

    力扣 421. 数组中两个数的最大异或值

    给定 (n) 个正整数的数组 (a),计算 (a_{i} oplus a_{j}) 的最大值

    数据规定

    (1leq nleq 2cdot 10^4)

    (1leq a_{i}leq 2^{31} - 1)

    题解

    将数组中所有正整数的二进制表示,按照从高位到低位的顺序,当作字符串挂载在字典树上,形成 (01) 字典树,该字典树为一棵二叉树

    对于正整数 (t),为了寻找数组中的 (s),使得 (xoplus t) 最大,我们只要每次贪心走与当前位相反的路即可

    具体来讲,如果当前位为 (1),我们走 (0) 子树,反之走 (1) 子树,当然,如果不存在对应的子树,我们还是得走存在的子树

    这样可以保证异或后的高位尽可能为 (1),在二进制表示中,高位为 (1),即使剩下的全 (0),结果也要比高位为 (0),剩下的全 (1) 结果大,直观的感受,((100)_{2} > (011)_{2}),这便证明了贪心的正确性

    时间复杂度为 (O(nlog L)),其中 (L = 2^{31} - 1)

    // cpp
    const int N = 2e4;
    const int M = 31;
    
    class Solution {
    public:
        int node[N * M][2], cnt = 0;
    
        void insert(int x)
        {
            int p = 0;
            for (int i = M; i >= 0; --i) {
                int idx = 1 & (x >> i);
                if (!node[p][idx]) node[p][idx] = ++cnt;
                p = node[p][idx];
            }
        }
        int query(int x)
        {
            int p = 0;
            int ans = 0;
            for (int i = M; i >= 0; --i) {
                int idx = 1 & (x >> i);
                if (node[p][idx ^ 1]) {
                    ans *= 2, ans += 1;
                    p = node[p][idx ^ 1];
                }
                else {
                    ans *= 2, ans += 0;
                    p = node[p][idx];
                }
            }
            return ans;
        }
    
        int findMaximumXOR(vector<int>& nums) {
            for (auto &i: nums) insert(i);
            int ans = 0;
            for (auto &i: nums) ans = max(ans, query(i));
            return ans;
        }
    };
    

    力扣 1707. 与数组中元素的最大异或值

    给定 (n) 个正整数的数组 (a),给定 (q) 个询问,每个询问包含两个正整数 (x_{i}, m_{i})

    对于每一个询问,在 (a) 中所有不大于 (m_{i}) 的数中选一个 (y),使得 (x_{i}oplus y) 最大,返回这个最大值

    数据规定

    (1leq n, qleq 10^5)

    (1leq a_{i}, x_{i}, m_{i}leq 10^9)

    题解

    离线查询,对 (a) 从小到大排序,对 (q) 按照 (m_{i}) 从小到大排序

    根据单调性,使用双指针,将 (a) 中符合条件的正整数 (a_{i}) 挂载到字典树上,进行查询即可

    时间复杂度为 (O((q + n)cdot log L + qlog q + nlog n)),其中 (L = 10^9)

    // cpp
    #define pb push_back
    
    const int N = 1e5;
    const int M = 30;
    
    class Solution {
    public:
        int node[N * M][2], cnt = 0;
    
        void insert(int x)
        {
            int p = 0;
            for (int i = M; i >= 0; --i) {
                int idx = 1 & (x >> i);
                if (!node[p][idx]) node[p][idx] = ++cnt;
                p = node[p][idx];
            }
        }
        int query(int x)
        {
            int p = 0;
            int ans = 0;
            for (int i = M; i >= 0; --i) {
                int idx = 1 & (x >> i);
                if (node[p][idx ^ 1]) {
                    ans *= 2, ans += 1;
                    p = node[p][idx ^ 1];
                }
                else {
                    ans *= 2, ans += 0;
                    p = node[p][idx];
                }
            }
            return ans;
        }
    
        vector<int> maximizeXor(vector<int>& nums, vector<vector<int>>& q) {
            int idx = 0;
            for (auto &i: q) i.pb(idx++);
            sort(q.begin(), q.end(), [&](const vector<int> &x, const vector<int> &y){
                return x[1] < y[1];
            });
            sort(nums.begin(), nums.end());
            int n = q.size();
            vector<int> ans(n);
            for (int i = 0, j = 0; i < n; ++i) {
                while (j < nums.size() && nums[j] <= q[i][1])
                    insert(nums[j++]);
                if (!j) ans[q[i][2]] = -1;
                else ans[q[i][2]] = query(q[i][0]);
            }
            return ans;
        }
    };
    

    力扣 1938. 查询最大基因差

    给定一棵 (n) 个节点的树,每个节点的编号 (i) 即为其权值 (v_{i})

    给定 (q) 个查询,每个查询包含树上一个点的编号 (i) 和目标值 (t)

    对于每一个查询,你需要选一个从根到 (i) 的节点 (j),要求使得 (j oplus i) 值最大,返回这个最大值

    数据规定

    (1leq nleq 10^5)

    (1leq qleq 3cdot 10^4)

    (1leq v_{i}leq 2cdot 10^5)

    题解

    离线查询,维护每个节点的所有查询

    我们需要维护一个从根到当前节点的路径,因此考虑 dfs

    具体来讲,深搜到当前点 (i) 时,将 (v_{i}) 挂载在 01 trie 上,同时进行一次查询,计算出最大的异或值,继续向下深搜,等到回溯的时候,将当前节点的权值从字典树上删除

    计算最大异或值时,每次贪心选择与当前位相反的节点即可

    时间复杂度为 (O((n + q)cdot log L)),其中 (L = 2cdot 10^5)

    // cpp
    #define pii pair< int, int >
    #define fi first
    #define se second
    #define pb push_back
    
    const int N = 2e5;
    const int M = 18;
    
    int node[N * M][2], bucket[N * M][2], cnt = 0;
    
    void insert(int x)
    {
        int p = 0;
        for (int i = M; i >= 0; --i) {
            int idx = 1 & (x >> i);
            if (!node[p][idx]) node[p][idx] = ++cnt;
            bucket[p][idx]++;
            p = node[p][idx];
        }
    }
    void del(int x)
    {
        int p = 0;
        for (int i = M; i >= 0; --i) {
            int idx = 1 & (x >> i);
            int next = node[p][idx];
            if (bucket[p][idx] == 1) node[p][idx] = 0;
            bucket[p][idx]--;
            p = next;
        }
    }
    int query(int x)
    {
        int p = 0;
        int ans = 0;
        for (int i = M; i >= 0; --i) {
            int idx = 1 & (x >> i);
            if (node[p][idx ^ 1]) {
                ans *= 2, ans += 1;
                p = node[p][idx ^ 1];
            }
            else {
                ans *= 2, ans += 0;
                p = node[p][idx];
            }
        }
        return ans;
    }
    
    class Solution {
    public:
        unordered_map< int, vector< pii > > mp;
        vector< int > son[N];
        void dfs(int u, vector< int > &ans)
        {
            insert(u);
            for (auto &i : mp[u]) ans[i.se] = query(i.fi);
            for (auto &i : son[u]) dfs(i, ans);
            del(u);
        }
        vector< int > maxGeneticDifference(vector< int > &p, vector< vector< int > > &q)
        {
            int root = 0;
            for (int i = 0; i < p.size(); ++i) {
                if (p[i] != -1)
                    son[p[i]].push_back(i);
                else
                    root = i;
            }
            int n = q.size();
            for (int i = 0; i < n; ++i) {
                q[i].pb(i);
                mp[q[i][0]].pb({ q[i][1], q[i][2] });
            }
            vector< int > ans(n);
            dfs(root, ans);
            return ans;
        }
    };
    
  • 相关阅读:
    17种高效选聘方法
    三招让你从求职者中脱颖而出(转)
    仓山有感
    同事就是同事,职场没有兄弟姐妹
    enable worker process
    央企
    关于IIS
    td
    About Application Pool
    iis 7 application pool
  • 原文地址:https://www.cnblogs.com/ChenyangXu/p/15100859.html
Copyright © 2020-2023  润新知