1 import tensorflow as tf 2 from tensorflow.examples.tutorials.mnist import input_data 3 4 '''数据下载''' 5 mnist=input_data.read_data_sets('Mnist_data',one_hot=True) 6 #one_hot标签 7 8 '''生成层 函数''' 9 def add_layer(input,in_size,out_size,n_layer='layer',activation_function=None): 10 layer_name='layer %s' % n_layer 11 '''补充知识''' 12 #tf.name_scope:Wrapper for Graph.name_scope() using the default graph. 13 #scope名字的作用域 14 #sprase:A string (not ending with '/') will create a new name scope, in which name is appended to the prefix of all operations created in the context. 15 #If name has been used before, it will be made unique by calling self.unique_name(name). 16 with tf.name_scope('weights'): 17 Weights=tf.Variable(tf.random_normal([in_size,out_size]),name='w') 18 tf.summary.histogram(layer_name+'/wights',Weights) 19 #tf.summary.histogram:output summary with histogram直方图 20 #tf,random_normal正太分布 21 with tf.name_scope('biases'): 22 biases=tf.Variable(tf.zeros([1,out_size])+0.1) 23 tf.summary.histogram(layer_name+'/biases',biases) 24 #tf.summary.histogram:k 25 with tf.name_scope('Wx_plus_b'): 26 Wx_plus_b=tf.matmul(input,Weights)+biases 27 if activation_function==None: 28 outputs=Wx_plus_b 29 else: 30 outputs=activation_function(Wx_plus_b) 31 tf.summary.histogram(layer_name+'/output',outputs) 32 return outputs 33 '''准确率''' 34 def compute_accuracy(v_xs,v_ys): 35 global prediction 36 y_pre=sess.run(prediction,feed_dict={xs:v_xs})#< 37 #tf.equal()对比预测值的索引和实际label的索引是否一样,一样返回True,否则返回false 38 correct_prediction=tf.equal(tf.argmax(y_pre,1),tf.argmax(v_ys,1)) 39 #correct_prediction-->[ True False True ..., True True True] 40 '''补充知识-tf.argmax''' 41 #tf.argmax:Returns the index with the largest value across dimensions of a tensor. 42 #tf.argmax()-----> 43 accuracy=tf.reduce_mean(tf.cast(correct_prediction,tf.float32)) 44 #正确cast为1,错误cast为0 45 '''补充知识 tf.cast''' 46 #tf.cast: Casts a tensor to a new type. 47 ## tensor `a` is [1.8, 2.2], dtype=tf.float 48 #tf.cast(a, tf.int32) ==> [1, 2] # dtype=tf.int32 49 result=sess.run(accuracy,feed_dict={xs:v_xs,ys:v_ys}) 50 #print(sess.run(correct_prediction,feed_dict={xs:v_xs,ys:v_ys})) 51 #ckc=tf.cast(correct_prediction,tf.float32) 52 #print(sess.run(ckc,feed_dict={xs:v_xs,ys:v_ys})) 53 return result 54 55 56 '''占位符''' 57 xs=tf.placeholder(tf.float32,[None,784]) 58 ys=tf.placeholder(tf.float32,[None,10]) 59 60 '''添加层''' 61 62 prediction=add_layer(xs,784,10,activation_function=tf.nn.softmax) 63 #sotmax激活函数,用于分类函数 64 65 '''计算''' 66 #交叉熵cross_entropy损失函数,参数分别为实际的预测值和实际的label值y,re 67 '''补充知识''' 68 #reduce_mean() 69 # 'x' is [[1., 1. ]] 70 # [2., 2.]] 71 #tf.reduce_mean(x) ==> 1.5 72 #tf.reduce_mean(x, 0) ==> [1.5, 1.5] 73 #tf.reduce_mean(x, 1) ==> [1., 2.] 74 cross_entropy = tf.reduce_mean(-tf.reduce_sum(ys*tf.log(prediction),reduction_indices=[1])) 75 '''补充知识''' 76 #reduce_sum 77 # 'x' is [[1, 1, 1]] 78 # [1, 1, 1]] 79 #tf.reduce_sum(x) ==> 6 80 #tf.reduce_sum(x, 0) ==> [2, 2, 2] 81 #tf.reduce_sum(x, 1) ==> [3, 3] 82 #tf.reduce_sum(x, 1, keep_dims=True) ==> [[3], [3]] 83 #tf.reduce_sum(x, [0, 1]) ==> 6 84 85 train_step=tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy) 86 87 '''Session_begin''' 88 with tf.Session() as sess: 89 sess.run(tf.global_variables_initializer()) 90 for i in range(1000): 91 batch_xs,batch_ys=mnist.train.next_batch(100) #逐个batch去取数据 92 sess.run(train_step,feed_dict={xs:batch_xs,ys:batch_ys}) 93 if(i%50==0): 94 print(compute_accuracy(mnist.test.images,mnist.test.labels)) 95