题面:
You're given a tree with nn vertices.
Your task is to determine the maximum possible number of edges that can be removed in such a way that all the remaining connected components will have even size.
The first line contains an integer nn (1≤n≤1051≤n≤105) denoting the size of the tree.
The next n−1n−1 lines contain two integers uu, vv (1≤u,v≤n1≤u,v≤n) each, describing the vertices connected by the ii-th edge.
It's guaranteed that the given edges form a tree.
Output a single integer kk — the maximum number of edges that can be removed to leave all connected components with even size, or −1−1if it is impossible to remove edges in order to satisfy this property.
4 2 4 4 1 3 1
1
3 1 2 1 3
-1
10 7 1 8 4 8 10 4 7 6 5 9 3 3 5 2 10 2 5
4
2 1 2
0
In the first example you can remove the edge between vertices 11 and 44. The graph after that will have two connected components with two vertices in each.
In the second example you can't remove edges in such a way that all components have even number of vertices, so the answer is −1−1.
题目描述:
给你一个有n个结点的树,其中有n-1条边,询问你最多你可以移动多少条边,使得每个强连通分量的个数均为偶数。
题目分析:
因为我们知道,如果所给的结点的个数是奇数,那么,因为奇数必定是由一个偶数和一个奇数组成,故总会有一个强连通分量的个数为奇数,因此当n为奇数使,答案为0。
那么当n等于偶数的时,我们只需要进行dfs遍历整张图,统计一下某个结点以及其儿子结点的数量,如果递归到最底时统计出的数量为偶数,则答案+1即可。
代码:
#include <bits/stdc++.h>
#define maxn 200005
using namespace std;
struct edge{
int to,next;
}q[maxn];
int head[maxn];
int sizz[maxn];
int cnt=0;
int ans=0;
void init(){
memset(head,-1,sizeof(head));
cnt=0;
}
void add_edge(int from,int to){
q[cnt].next=head[from];
q[cnt].to=to;
head[from]=cnt++;
}
void dfs(int x,int fa){
sizz[x]=1;
for(int i=head[x];i!=-1;i=q[i].next){
if(q[i].to==fa) continue;
dfs(q[i].to,x);
sizz[x]+=sizz[q[i].to];
}
if(sizz[x]%2==0) ans++,sizz[x]=0;
}
int main()
{
int n;
cin>>n;
init();
for(int i=0;i<n-1;i++){
int a,b;
cin>>a>>b;
add_edge(a,b);
add_edge(b,a);
}
if(n&1) {
puts("-1");
return 0;
}
dfs(1,-1);
cout<<ans-1<<endl;
}