一、背景
1.1 SMP(Symmetric Multi-Processor)
对称多处理器结构,它是相对非对称多处理技术而言的、应用十分广泛的并行技术。在这种架构中,一台计算机由多个CPU组成,并共享内存和其他资源,所有的CPU都可以平等地访问内存、I/O和外部中断。虽然同时使用多个CPU,但是从管理的角度来看,它们的表现就像一台单机一样。操作系统将任务队列对称地分布于多个CPU之上,从而极大地提高了整个系统的数据处理能力。但是随着CPU数量的增加,每个CPU都要访问相同的内存资源,共享资源可能会成为系统瓶颈,导致CPU资源浪费。
1.2 NUMA(Non-Uniform Memory Access)
非一致存储访问,将CPU分为CPU模块,每个CPU模块由多个CPU组成,并且具有独立的本地内存、I/O槽口等,模块之间可以通过互联模块相互访问,访问本地内存(本CPU模块的内存)的速度将远远高于访问远地内存(其他CPU模块的内存)的速度,这也是非一致存储访问的由来。NUMA较好地解决SMP的扩展问题,当CPU数量增加时,因为访问远地内存的延时远远超过本地内存,系统性能无法线性增加。
1.3 CLH、MCS命名来源
- MCS:John Mellor-Crummey and Michael Scott
- CLH:Craig,Landin andHagersten
二、CLH锁
CLH是一种基于单向链表的高性能、公平的自旋锁。申请加锁的线程通过前驱节点的变量进行自旋。在前置节点解锁后,当前节点会结束自旋,并进行加锁。在SMP架构下,CLH更具有优势。在NUMA架构下,如果当前节点与前驱节点不在同一CPU模块下,跨CPU模块会带来额外的系统开销,而MCS锁更适用于NUMA架构。
锁值:我把自旋条件定义为锁值 locked。locked == true 表示节点的处于加锁状态或者等待加锁状态,locked == false 表示节点处于解锁状态。
- 基于线程当前节点的前置节点的锁值(locked)进行自旋,locked == true 自旋,locked == false 加锁成功。
- locked == true 表示节点处于加锁状态或者等待加锁状态。
- locked == false 表示节点处于解锁状态。
- 每个节点在解锁时更新自己的锁值(locked),在这一时刻,该节点的后置节点会结束自旋,并进行加锁。
2.1 加锁逻辑
- 获取当前线程的锁节点,如果为空则进行初始化。
- 通过同步方法获取尾节点,并将当前节点置为尾节点,此时获取到的尾节点为当前节点的前驱节点。
- 如果尾节点为空,则表示当前节点为第一个节点,加锁成功。
- 如果尾节点不为空,则基于前驱节点的锁值(locked==true)进行自旋,直到前驱节点的锁值 locked == false。
2.2 解锁逻辑
- 获取当前线程的锁节点,如果节点为空或者锁值(locked== false)则无需解锁,直接返回。
- 使用同步方法为尾节点赋空值,赋值不成功则表示当前节点不是尾节点,需要将当前节点的 locked == false 已保证解锁该节点。如果当前节点为尾节点,则无需设置该节点的锁值。因为该节点没有后置节点,即使设置了,也没有实际意义。
2.3 Java代码
package org.learn.lock; import java.util.concurrent.atomic.AtomicReference; /** * MCS:John Mellor-Crummey and Michael Scott * CLH:Craig,Landin and Hagersten * @author zhibo * @version 1.0 * @date 2018/11/7 10:39 */ public class CLHLock implements Lock { private AtomicReference<CLHNode> tail; private ThreadLocal<CLHNode> threadLocal; public CLHLock() { this.tail = new AtomicReference<>(); this.threadLocal = new ThreadLocal<>(); } @Override public void lock() { CLHNode curNode = threadLocal.get(); if(curNode == null){ curNode = new CLHNode(); threadLocal.set(curNode); } CLHNode predNode = tail.getAndSet(curNode); if(predNode != null){ while (predNode.getLocked()){ } } } @Override public void unlock() { CLHNode curNode = threadLocal.get(); threadLocal.remove(); if(curNode == null || curNode.getLocked() == false){ return; } if(!tail.compareAndSet(curNode, null)){ curNode.setLocked(false); } } public static void main(String[] args) { final Lock clhLock = new CLHLock(); for (int i = 0; i < 10; i++) { new Thread(new DemoTask(clhLock, i + "")).start(); } } class CLHNode { private volatile boolean locked = true; public boolean getLocked() { return locked; } public void setLocked(boolean locked) { this.locked = locked; } } } package org.learn.lock; /** * @author zhibo * @version 1.0 * @date 2018/11/7 14:22 */ public class DemoTask implements Runnable { private Lock lock; private String taskId; public DemoTask(final Lock lock, final String taskId){ this.lock = lock; this.taskId = taskId; } @Override public void run() { try { lock.lock(); Thread.sleep(500); System.out.println(String.format("Thread %s Completed", taskId)); } catch (Exception e) { e.printStackTrace(); } finally { lock.unlock(); } } }
并发锁核心类AQS
一、概念
AQS 是 AbstractQueuedSynchronizer 的简称,AQS 是一个抽象的队列式同步器框架,提供了阻塞锁和 FIFO 队列实现同步操作。JUC 包中的同步类基本都是基于 AQS 同步器来实现的,如 ReentrantLock,Semaphore 等。
二、原理
1、AQS 工作机制:(三点)
-
如果被请求的共享资源空闲,则将当前请求资源的线程设置为有效的工作线程,并且将共享资源设置为锁定状态。
-
如果被请求的共享资源被占用,则将获取不到锁的线程加入到队列中。等到占有线程释放锁后唤醒队列中的任务争抢锁,这个队列为 CLH 队列。
-
使用state成员变量表示当前的同步状态,提供 getState,setState,compareAndSetState 进行操作。
2、CLH 队列:
虚拟的双向队列,底层是双向链表,包括head节点和tail结点,仅存在结点之间的关联关系。AQS将每条请求共享资源的线程封装成一个CLH锁队列的一个结点(Node)来实现锁的分配。
3、AQS 对资源的共享方式
AQS定义两种资源共享方式
-
独占 ( Exclusive ):只有一个线程能执行,如 ReentrantLock。又可分为公平锁和非公平锁:
-
公平锁:按照线程在队列中的排队顺序,先到者先拿到锁
-
非公平锁:当线程要获取锁时,无视队列顺序直接去抢锁,谁抢到就是谁的,所以非公平锁效率较高
-
共享 ( Share ):多个线程可同时执行,如Semaphore、CountDownLatch。
4、AQS 的设计模式
AQS 同步器的设计是基于模板方法模式。使用者继承AbstractQueuedSynchronizer并重写指定的方法。实现对于共享资源state的获取和释放。
将AQS组合在自定义同步组件的实现中,并调用其模板方法,而这些模板方法会调用使用者重写的方法。 AQS类中的其他方法都是final ,所以无法被其他类使用,只有这几个方法可以被其他类使用,自定义同步器时需要重写下面几个AQS提供的模板方法:
isHeldExclusively()//该线程是否正在独占资源。只有用到condition才需要去实现它。
tryAcquire(int)//独占方式。尝试获取资源,成功则返回true,失败则返回false。
tryRelease(int)//独占方式。尝试释放资源,成功则返回true,失败则返回false。
tryAcquireShared(int)//共享方式。尝试获取资源。负数表示失败;0表示成功,但没有剩余可用资源;正数表示成功,且有剩余资源。
tryReleaseShared(int)//共享方式。尝试释放资源,成功则返回true,失败则返回false。
以 ReentrantLock为 例,state初始化为0,表示未锁定状态。A线程lock()时,会调用tryAcquire()独占该锁并将state+1。此后,其他线程在tryAcquire()时就会失败,直到A线程unlock()到state=0(即释放锁)为止,其它线程才有机会获取该锁。当然,释放锁之前,A线程自己是可以重复获取此锁的(state会累加),这就是可重入的概念。但要注意,获取多少次就要释放多少次,这样才能保证state是能回到零态的。
三、空间结构
AbstractQueuedSynchronizer继承自AbstractOwnableSynchronizer抽象类,并且实现了Serializable接口,可以进行序列化。
AbstractQueuedSynchronizer extends AbstractOwnableSynchronizer implements java.io.Serializable
队列中Node的头结点
private transient volatile Node head;
队列中Node的尾结点
private transient volatile Node tail;
表示同步状态的成员变量,使用volatile修饰保证线程可见性
private volatile int state;
返回同步状态的当前值
protected final int getState() {
return state;
}
设置同步状态的值
protected final void setState(int newState) {
state = newState;
}
原子地(CAS操作)将同步状态值设置为给定值update如果当前同步状态的值等于expect(期望值)
protected final boolean compareAndSetState(int expect, int update) {
return unsafe.compareAndSwapInt(this, stateOffset, expect, update);
}
自旋时间
static final long spinForTimeoutThreshold = 1000L;
Unsafe类实例
private static final Unsafe unsafe = Unsafe.getUnsafe();
state内存偏移地址
private static final long stateOffset;
head内存偏移地址
private static final long headOffset;
tail内存偏移地址
private static final long tailOffset;
节点状态内存偏移地址
private static final long waitStatusOffset;
next内存偏移地址
private static final long nextOffset;
静态初始化块,用于加载内存偏移地址。
static {
try {
stateOffset = unsafe.objectFieldOffset
(AbstractQueuedSynchronizer.class.getDeclaredField("state"));
headOffset = unsafe.objectFieldOffset
(AbstractQueuedSynchronizer.class.getDeclaredField("head"));
tailOffset = unsafe.objectFieldOffset
(AbstractQueuedSynchronizer.class.getDeclaredField("tail"));
waitStatusOffset = unsafe.objectFieldOffset
(Node.class.getDeclaredField("waitStatus"));
nextOffset = unsafe.objectFieldOffset
(Node.class.getDeclaredField("next"));
} catch (Exception ex) { throw new Error(ex); }
}
类构造方法为从抽象构造方法,供子类调用。
protected AbstractQueuedSynchronizer() { }
四、常用方法
acquire
该方法以独占模式获取资源,先尝试获取锁,如果获取失败则调用addWaiter将该线程加入队列中。
源码如下:
public final void acquire(int arg) {
if (!tryAcquire(arg) && acquireQueued(addWaiter(Node.EXCLUSIVE), arg))
selfInterrupt();
}
由上述源码可以知道,当一个线程调用acquire时,调用方法流程如下
-
首先调用tryAcquire方法,调用此方法的线程会试图在独占模式下获取对象状态。此方法应该查询是否允许它在独占模式下获取对象状态,如果允许,则获取它。在AbstractQueuedSynchronizer源码中默认会抛出一个异常,即需要子类去重写此方法完成自己的逻辑。之后会进行分析。
-
若tryAcquire失败,则调用addWaiter方法,addWaiter方法完成的功能是将调用此方法的线程封装成为一个结点并放入Sync queue。
-
调用acquireQueued方法,此方法完成的功能是Sync queue中的结点不断尝试获取资源,若成功,则返回true,否则,返回false。
-
由于tryAcquire默认实现是抛出异常,所以此时,不进行分析,之后会结合一个例子进行分析。
addWaiter
使用快速添加的方式往sync queue尾部添加结点,如果sync queue队列还没有初始化,则会使用enq插入队列中。
// 添加等待者
private Node addWaiter(Node mode) {
// 新生成一个结点,默认为独占模式
Node node = new Node(Thread.currentThread(), mode);
// Try the fast path of enq; backup to full enq on failure
// 保存尾结点
Node pred = tail;
if (pred != null) { // 尾结点不为空,即已经被初始化
// 将node结点的prev域连接到尾结点
node.prev = pred;
if (compareAndSetTail(pred, node)) { // 比较pred是否为尾结点,是则将尾结点设置为node
// 设置尾结点的next域为node
pred.next = node;
return node; // 返回新生成的结点
}
}
enq(node); // 尾结点为空(即还没有被初始化过),或者是compareAndSetTail操作失败,则入队列
return node;
}
enq
使用无限循环来确保节点的成功插入。
private Node enq(final Node node) {
for (;;) { // 无限循环,确保结点能够成功入队列
// 保存尾结点
Node t = tail;
if (t == null) { // 尾结点为空,即还没被初始化
if (compareAndSetHead(new Node())) // 头结点为空,并设置头结点为新生成的结点
tail = head; // 头结点与尾结点都指向同一个新生结点
} else { // 尾结点不为空,即已经被初始化过
// 将node结点的prev域连接到尾结点
node.prev = t;
if (compareAndSetTail(t, node)) { // 比较结点t是否为尾结点,若是则将尾结点设置为node
// 设置尾结点的next域为node
t.next = node;
return t; // 返回尾结点
}
}
}
}
acquireQueue
首先获取当前节点的前驱节点,如果前驱节点是头结点并且能够获取(资源),代表该当前节点能够占有锁,设置头结点为当前节点,返回。否则,调用shouldParkAfterFailedAcquire和parkAndCheckInterrupt方法
// sync队列中的结点在独占且忽略中断的模式下获取(资源)
final boolean acquireQueued(final Node node, int arg) {
// 标志
boolean failed = true;
try {
// 中断标志
boolean interrupted = false;
for (;;) { // 无限循环
// 获取node节点的前驱结点
final Node p = node.predecessor();
if (p == head && tryAcquire(arg)) { // 前驱为头结点并且成功获得锁
setHead(node); // 设置头结点
p.next = null; // help GC
failed = false; // 设置标志
return interrupted;
}
if (shouldParkAfterFailedAcquire(p, node) &&
parkAndCheckInterrupt())
interrupted = true;
}
} finally {
if (failed)
cancelAcquire(node);
}
}
shouldParkAfterFailedAcquire和方法,首先,我们看
shouldParkAfterFailedAcquire
只有当该节点的前驱结点的状态为SIGNAL时,才可以对该结点所封装的线程进行park操作。否则,将不能进行park操作。
// 当获取(资源)失败后,检查并且更新结点状态
private static boolean shouldParkAfterFailedAcquire(Node pred, Node node) {
// 获取前驱结点的状态
int ws = pred.waitStatus;
if (ws == Node.SIGNAL) // 状态为SIGNAL,为-1
// 可以进行park操作
return true;
if (ws > 0) { // 表示状态为CANCELLED,为1
do {
node.prev = pred = pred.prev;
} while (pred.waitStatus > 0); // 找到pred结点前面最近的一个状态不为CANCELLED的结点
// 赋值pred结点的next域
pred.next = node;
} else { // 为PROPAGATE -3 或者是0 表示无状态,(为CONDITION -2时,表示此节点在condition queue中)
// 比较并设置前驱结点的状态为SIGNAL
compareAndSetWaitStatus(pred, ws, Node.SIGNAL);
}
// 不能进行park操作
return false;
}
parkAndCheckInterrupt
首先执行park操作,即禁用当前线程,然后返回该线程是否已经被中断
// 进行park操作并且返回该线程是否被中断
private final boolean parkAndCheckInterrupt() {
// 在许可可用之前禁用当前线程,并且设置了blocker
LockSupport.park(this);
return Thread.interrupted(); // 当前线程是否已被中断,并清除中断标记位
}
cancelAcquire
该方法完成的功能就是取消当前线程对资源的获取,即设置该节点的状态为CANCELLED
// 取消继续获取(资源)
private void cancelAcquire(Node node) {
// Ignore if node doesn't exist
// node为空,返回
if (node == null)
return;
// 设置node结点的thread为空
node.thread = null;
// Skip cancelled predecessors
// 保存node的前驱结点
Node pred = node.prev;
while (pred.waitStatus > 0) // 找到node前驱结点中第一个状态小于0的结点,即不为CANCELLED状态的结点
node.prev = pred = pred.prev;
// 获取pred结点的下一个结点
Node predNext = pred.next;
// 设置node结点的状态为CANCELLED
node.waitStatus = Node.CANCELLED;
// If we are the tail, remove ourselves.
if (node == tail && compareAndSetTail(node, pred)) { // node结点为尾结点,则设置尾结点为pred结点
// 比较并设置pred结点的next节点为null
compareAndSetNext(pred, predNext, null);
} else { // node结点不为尾结点,或者比较设置不成功
int ws;
if (pred != head &&
((ws = pred.waitStatus) == Node.SIGNAL ||
(ws <= 0 && compareAndSetWaitStatus(pred, ws, Node.SIGNAL))) &&
pred.thread != null) { // (pred结点不为头结点,并且pred结点的状态为SIGNAL)或者
// pred结点状态小于等于0,并且比较并设置等待状态为SIGNAL成功,并且pred结点所封装的线程不为空
// 保存结点的后继
Node next = node.next;
if (next != null && next.waitStatus <= 0) // 后继不为空并且后继的状态小于等于0
compareAndSetNext(pred, predNext, next); // 比较并设置pred.next = next;
} else {
unparkSuccessor(node); // 释放node的前一个结点
}
node.next = node; // help GC
}
}
unparkSuccessor
该方法的作用就是为了释放node节点的后继节点。
// 释放后继结点
private void unparkSuccessor(Node node) {
// 获取node结点的等待状态
int ws = node.waitStatus;
if (ws < 0) // 状态值小于0,为SIGNAL -1 或 CONDITION -2 或 PROPAGATE -3
// 比较并且设置结点等待状态,设置为0
compareAndSetWaitStatus(node, ws, 0);
// 获取node节点的下一个结点
Node s = node.next;
if (s == null || s.waitStatus > 0) { // 下一个结点为空或者下一个节点的等待状态大于0,即为CANCELLED
// s赋值为空
s = null;
// 从尾结点开始从后往前开始遍历
for (Node t = tail; t != null && t != node; t = t.prev)
if (t.waitStatus <= 0) // 找到等待状态小于等于0的结点,找到最前的状态小于等于0的结点
// 保存结点
s = t;
}
if (s != null) // 该结点不为为空,释放许可
LockSupport.unpark(s.thread);
}
对于cancelAcquire与unparkSuccessor方法,如下示意图可以清晰的表示:
其中node为参数,在执行完cancelAcquire方法后的效果就是unpark了s结点所包含的t4线程。
现在,再来看acquireQueued方法的整个的逻辑。逻辑如下:
-
判断结点的前驱是否为head并且是否成功获取(资源)。
-
若步骤1均满足,则设置结点为head,之后会判断是否finally模块,然后返回。
-
若步骤2不满足,则判断是否需要park当前线程,是否需要park当前线程的逻辑是判断结点的前驱结点的状态是否为SIGNAL,若是,则park当前结点,否则,不进行park操作。
-
若park了当前线程,之后某个线程对本线程unpark后,并且本线程也获得机会运行。那么,将会继续进行步骤①的判断。
release
以独占模式释放对象,其中 tryRelease 的默认实现是抛出异常,需要具体的子类实现,如果 tryRelease 成功,那么如果头结点不为空并且头结点的状态不为 0,则释放头结点的后继结点。
public final boolean release(int arg) {
if (tryRelease(arg)) { // 释放成功
// 保存头结点
Node h = head;
if (h != null && h.waitStatus != 0) // 头结点不为空并且头结点状态不为0
unparkSuccessor(h); //释放头结点的后继结点
return true;
}
return false;
}
五、内部类
Node类
每个线程被阻塞的线程都会被封装成一个Node结点,放入队列。每个节点包含了一个Thread类型的引用,并且每个节点都存在一个状态,具体状态如下。
-
CANCELLED,值为1,表示当前的线程被取消。
-
SIGNAL,值为-1,表示当前节点的后继节点包含的线程需要运行,需要进行unpark操作。
-
CONDITION,值为-2,表示当前节点在等待condition,也就是在condition queue中。
-
PROPAGATE,值为-3,表示当前场景下后续的acquireShared能够得以执行。
-
值为0,表示当前节点在sync queue中,等待着获取锁。
static final class Node {
// 模式,分为共享与独占
// 共享模式
static final Node SHARED = new Node();
// 独占模式
static final Node EXCLUSIVE = null;
// 结点状态
// CANCELLED,值为1,表示当前的线程被取消
// SIGNAL,值为-1,表示当前节点的后继节点包含的线程需要运行,也就是unpark
// CONDITION,值为-2,表示当前节点在等待condition,也就是在condition队列中
// PROPAGATE,值为-3,表示当前场景下后续的acquireShared能够得以执行
// 值为0,表示当前节点在sync队列中,等待着获取锁
static final int CANCELLED = 1;
static final int SIGNAL = -1;
static final int CONDITION = -2;
static final int PROPAGATE = -3;
// 结点状态
volatile int waitStatus;
// 前驱结点
volatile Node prev;
// 后继结点
volatile Node next;
// 结点所对应的线程
volatile Thread thread;
// 下一个等待者
Node nextWaiter;
// 结点是否在共享模式下等待
final boolean isShared() {
return nextWaiter == SHARED;
}
// 获取前驱结点,若前驱结点为空,抛出异常
final Node predecessor() throws NullPointerException {
// 保存前驱结点
Node p = prev;
if (p == null) // 前驱结点为空,抛出异常
throw new NullPointerException();
else // 前驱结点不为空,返回
return p;
}
// 无参构造方法
Node() { // Used to establish initial head or SHARED marker
}
// 构造方法
Node(Thread thread, Node mode) { // Used by addWaiter
this.nextWaiter = mode;
this.thread = thread;
}
// 构造方法
Node(Thread thread, int waitStatus) { // Used by Condition
this.waitStatus = waitStatus;
this.thread = thread;
}
}
ConditionObject类
// 内部类
public class ConditionObject implements Condition, java.io.Serializable {
// 版本号
private static final long serialVersionUID = 1173984872572414699L;
// condition队列的头结点
private transient Node firstWaiter;
// condition队列的尾结点
private transient Node lastWaiter;
// 构造方法
public ConditionObject() { }
// 添加新的waiter到wait队列
private Node addConditionWaiter() {
// 保存尾结点
Node t = lastWaiter;
// 尾结点不为空,并且尾结点的状态不为CONDITION
if (t != null && t.waitStatus != Node.CONDITION) {
// 清除状态为CONDITION的结点
unlinkCancelledWaiters();
// 将最后一个结点重新赋值给t
t = lastWaiter;
}
// 新建一个结点
Node node = new Node(Thread.currentThread(), Node.CONDITION);
if (t == null) // 尾结点为空
// 设置condition队列的头结点
firstWaiter = node;
else // 尾结点不为空
// 设置为节点的nextWaiter域为node结点
t.nextWaiter = node;
// 更新condition队列的尾结点
lastWaiter = node;
return node;
}
private void doSignal(Node first) {
// 循环
do {
if ( (firstWaiter = first.nextWaiter) == null) // 该节点的nextWaiter为空
// 设置尾结点为空
lastWaiter = null;
// 设置first结点的nextWaiter域
first.nextWaiter = null;
} while (!transferForSignal(first) &&
(first = firstWaiter) != null); // 将结点从condition队列转移到sync队列失败并且condition队列中的头结点不为空,一直循环
}
private void doSignalAll(Node first) {
// condition队列的头结点尾结点都设置为空
lastWaiter = firstWaiter = null;
// 循环
do {
// 获取first结点的nextWaiter域结点
Node next = first.nextWaiter;
// 设置first结点的nextWaiter域为空
first.nextWaiter = null;
// 将first结点从condition队列转移到sync队列
transferForSignal(first);
// 重新设置first
first = next;
} while (first != null);
}
// 从condition队列中清除状态为CANCEL的结点
private void unlinkCancelledWaiters() {
// 保存condition队列头结点
Node t = firstWaiter;
Node trail = null;
while (t != null) { // t不为空
// 下一个结点
Node next = t.nextWaiter;
if (t.waitStatus != Node.CONDITION) { // t结点的状态不为CONDTION状态
// 设置t节点的额nextWaiter域为空
t.nextWaiter = null;
if (trail == null) // trail为空
// 重新设置condition队列的头结点
firstWaiter = next;
else // trail不为空
// 设置trail结点的nextWaiter域为next结点
trail.nextWaiter = next;
if (next == null) // next结点为空
// 设置condition队列的尾结点
lastWaiter = trail;
}
else // t结点的状态为CONDTION状态
// 设置trail结点
trail = t;
// 设置t结点
t = next;
}
}
// 唤醒一个等待线程。如果所有的线程都在等待此条件,则选择其中的一个唤醒。在从 await 返回之前,该线程必须重新获取锁。
public final void signal() {
if (!isHeldExclusively()) // 不被当前线程独占,抛出异常
throw new IllegalMonitorStateException();
// 保存condition队列头结点
Node first = firstWaiter;
if (first != null) // 头结点不为空
// 唤醒一个等待线程
doSignal(first);
}
// 唤醒所有等待线程。如果所有的线程都在等待此条件,则唤醒所有线程。在从 await 返回之前,每个线程都必须重新获取锁。
public final void signalAll() {
if (!isHeldExclusively()) // 不被当前线程独占,抛出异常
throw new IllegalMonitorStateException();
// 保存condition队列头结点
Node first = firstWaiter;
if (first != null) // 头结点不为空
// 唤醒所有等待线程
doSignalAll(first);
}
// 等待,当前线程在接到信号之前一直处于等待状态,不响应中断
public final void awaitUninterruptibly() {
// 添加一个结点到等待队列
Node node = addConditionWaiter();
// 获取释放的状态
int savedState = fullyRelease(node);
boolean interrupted = false;
while (!isOnSyncQueue(node)) { //
// 阻塞当前线程
LockSupport.park(this);
if (Thread.interrupted()) // 当前线程被中断
// 设置interrupted状态
interrupted = true;
}
if (acquireQueued(node, savedState) || interrupted)
selfInterrupt();
}
private static final int REINTERRUPT = 1;
private static final int THROW_IE = -1;
private int checkInterruptWhileWaiting(Node node) {
return Thread.interrupted() ?
(transferAfterCancelledWait(node) ? THROW_IE : REINTERRUPT) :
0;
}
private void reportInterruptAfterWait(int interruptMode)
throws InterruptedException {
if (interruptMode == THROW_IE)
throw new InterruptedException();
else if (interruptMode == REINTERRUPT)
selfInterrupt();
}
// 等待,当前线程在接到信号或被中断之前一直处于等待状态
public final void await() throws InterruptedException {
if (Thread.interrupted()) // 当前线程被中断,抛出异常
throw new InterruptedException();
// 在wait队列上添加一个结点
Node node = addConditionWaiter();
int savedState = fullyRelease(node);
int interruptMode = 0;
while (!isOnSyncQueue(node)) {
// 阻塞当前线程
LockSupport.park(this);
if ((interruptMode = checkInterruptWhileWaiting(node)) != 0) // 检查结点等待时的中断类型
break;
}
if (acquireQueued(node, savedState) && interruptMode != THROW_IE)
interruptMode = REINTERRUPT;
if (node.nextWaiter != null) // clean up if cancelled
unlinkCancelledWaiters();
if (interruptMode != 0)
reportInterruptAfterWait(interruptMode);
}
// 等待,当前线程在接到信号、被中断或到达指定等待时间之前一直处于等待状态
public final long awaitNanos(long nanosTimeout)
throws InterruptedException {
if (Thread.interrupted())
throw new InterruptedException();
Node node = addConditionWaiter();
int savedState = fullyRelease(node);
final long deadline = System.nanoTime() + nanosTimeout;
int interruptMode = 0;
while (!isOnSyncQueue(node)) {
if (nanosTimeout <= 0L) {
transferAfterCancelledWait(node);
break;
}
if (nanosTimeout >= spinForTimeoutThreshold)
LockSupport.parkNanos(this, nanosTimeout);
if ((interruptMode = checkInterruptWhileWaiting(node)) != 0)
break;
nanosTimeout = deadline - System.nanoTime();
}
if (acquireQueued(node, savedState) && interruptMode != THROW_IE)
interruptMode = REINTERRUPT;
if (node.nextWaiter != null)
unlinkCancelledWaiters();
if (interruptMode != 0)
reportInterruptAfterWait(interruptMode);
return deadline - System.nanoTime();
}
// 等待,当前线程在接到信号、被中断或到达指定最后期限之前一直处于等待状态
public final boolean awaitUntil(Date deadline)
throws InterruptedException {
long abstime = deadline.getTime();
if (Thread.interrupted())
throw new InterruptedException();
Node node = addConditionWaiter();
int savedState = fullyRelease(node);
boolean timedout = false;
int interruptMode = 0;
while (!isOnSyncQueue(node)) {
if (System.currentTimeMillis() > abstime) {
timedout = transferAfterCancelledWait(node);
break;
}
LockSupport.parkUntil(this, abstime);
if ((interruptMode = checkInterruptWhileWaiting(node)) != 0)
break;
}
if (acquireQueued(node, savedState) && interruptMode != THROW_IE)
interruptMode = REINTERRUPT;
if (node.nextWaiter != null)
unlinkCancelledWaiters();
if (interruptMode != 0)
reportInterruptAfterWait(interruptMode);
return !timedout;
}
// 等待,当前线程在接到信号、被中断或到达指定等待时间之前一直处于等待状态。此方法在行为上等效于: awaitNanos(unit.toNanos(time)) > 0
public final boolean await(long time, TimeUnit unit)
throws InterruptedException {
long nanosTimeout = unit.toNanos(time);
if (Thread.interrupted())
throw new InterruptedException();
Node node = addConditionWaiter();
int savedState = fullyRelease(node);
final long deadline = System.nanoTime() + nanosTimeout;
boolean timedout = false;
int interruptMode = 0;
while (!isOnSyncQueue(node)) {
if (nanosTimeout <= 0L) {
timedout = transferAfterCancelledWait(node);
break;
}
if (nanosTimeout >= spinForTimeoutThreshold)
LockSupport.parkNanos(this, nanosTimeout);
if ((interruptMode = checkInterruptWhileWaiting(node)) != 0)
break;
nanosTimeout = deadline - System.nanoTime();
}
if (acquireQueued(node, savedState) && interruptMode != THROW_IE)
interruptMode = REINTERRUPT;
if (node.nextWaiter != null)
unlinkCancelledWaiters();
if (interruptMode != 0)
reportInterruptAfterWait(interruptMode);
return !timedout;
}
final boolean isOwnedBy(AbstractQueuedSynchronizer sync) {
return sync == AbstractQueuedSynchronizer.this;
}
// 查询是否有正在等待此条件的任何线程
protected final boolean hasWaiters() {
if (!isHeldExclusively())
throw new IllegalMonitorStateException();
for (Node w = firstWaiter; w != null; w = w.nextWaiter) {
if (w.waitStatus == Node.CONDITION)
return true;
}
return false;
}
// 返回正在等待此条件的线程数估计值
protected final int getWaitQueueLength() {
if (!isHeldExclusively())
throw new IllegalMonitorStateException();
int n = 0;
for (Node w = firstWaiter; w != null; w = w.nextWaiter) {
if (w.waitStatus == Node.CONDITION)
++n;
}
return n;
}
// 返回包含那些可能正在等待此条件的线程集合
protected final Collection<Thread> getWaitingThreads() {
if (!isHeldExclusively())
throw new IllegalMonitorStateException();
ArrayList<Thread> list = new ArrayList<Thread>();
for (Node w = firstWaiter; w != null; w = w.nextWaiter) {
if (w.waitStatus == Node.CONDITION) {
Thread t = w.thread;
if (t != null)
list.add(t);
}
}
return list;
}
}
此类实现了Condition接口,Condition接口定义了条件操作规范,具体如下
public interface Condition {
// 等待,当前线程在接到信号或被中断之前一直处于等待状态
void await() throws InterruptedException;
// 等待,当前线程在接到信号之前一直处于等待状态,不响应中断
void awaitUninterruptibly();
//等待,当前线程在接到信号、被中断或到达指定等待时间之前一直处于等待状态
long awaitNanos(long nanosTimeout) throws InterruptedException;
// 等待,当前线程在接到信号、被中断或到达指定等待时间之前一直处于等待状态。此方法在行为上等效于: awaitNanos(unit.toNanos(time)) > 0
boolean await(long time, TimeUnit unit) throws InterruptedException;
// 等待,当前线程在接到信号、被中断或到达指定最后期限之前一直处于等待状态
boolean awaitUntil(Date deadline) throws InterruptedException;
// 唤醒一个等待线程。如果所有的线程都在等待此条件,则选择其中的一个唤醒。在从 await 返回之前,该线程必须重新获取锁。
void signal();
// 唤醒所有等待线程。如果所有的线程都在等待此条件,则唤醒所有线程。在从 await 返回之前,每个线程都必须重新获取锁。
void signalAll();
}
原文链接:https://blog.csdn.net/tc979907461/article/details/105979761