• bzoj 3479: [Usaco2014 Mar]Watering the Fields


    3479: [Usaco2014 Mar]Watering the Fields

    Time Limit: 10 Sec  Memory Limit: 128 MB
    Submit: 174  Solved: 97
    [Submit][Status][Discuss]

    Description

     Due to a lack of rain, Farmer John wants to build an irrigation system to send water between his N fields (1 <= N <= 2000). Each field i is described by a distinct point (xi, yi) in the 2D plane, with 0 <= xi, yi <= 1000. The cost of building a water pipe between two fields i and j is equal to the squared Euclidean distance between them: (xi - xj)^2 + (yi - yj)^2 FJ would like to build a minimum-cost system of pipes so that all of his fields are linked together -- so that water in any field can follow a sequence of pipes to reach any other field. Unfortunately, the contractor who is helping FJ install his irrigation system refuses to install any pipe unless its cost (squared Euclidean length) is at least C (1 <= C <= 1,000,000). Please help FJ compute the minimum amount he will need pay to connect all his fields with a network of pipes.

    草坪上有N个水龙头,位于(xi,yi)

    求将n个水龙头连通的最小费用。
    任意两个水龙头可以修剪水管,费用为欧几里得距离的平方。 修水管的人只愿意修费用大于等于c的水管。

     

    Input

    * Line 1: The integers N and C.

    * Lines 2..1+N: Line i+1 contains the integers xi and yi.

    Output

    * Line 1: The minimum cost of a network of pipes connecting the fields, or -1 if no such network can be built. 

    Sample Input

    3 11
    0 2
    5 0
    4 3

    INPUT DETAILS: There are 3 fields, at locations (0,2), (5,0), and (4,3). The contractor will only install pipes of cost at least 11.

    Sample Output

    46
    OUTPUT DETAILS: FJ cannot build a pipe between the fields at (4,3) and (5,0), since its cost would be only 10. He therefore builds a pipe between (0,2) and (5,0) at cost 29, and a pipe between (0,2) and (4,3) at cost 17.

    HINT

     

    Source

    Silver 译文By Hta

                              [Submit][Status][Discuss]

      居然当成162M,结果数组开爆了。。。。。

     1 #include<bits/stdc++.h>
     2 using namespace std;
     3 const int MAX=2001;
     4 struct node{
     5     int x,y;
     6 };
     7 node pos[MAX];
     8 struct node1{
     9     int left,right;
    10     int cost;
    11 };
    12 node1 edge[MAX*MAX];
    13 int cmp(const node1 &a,const node1 &b){
    14     if(a.cost<b.cost) return 1;
    15     return 0;
    16 }
    17 int fa[MAX];
    18 int get_fa(int v){
    19     if(v!=fa[v]){
    20         fa[v]=get_fa(fa[v]);
    21     }
    22     return fa[v];
    23 }
    24 int hehe(int m,int n){
    25     if(m>n){
    26         m=m+n;
    27         n=m-n;
    28         m=m-n;
    29     }
    30     int mm=get_fa(m);
    31     int nn=get_fa(n);
    32     fa[mm]=nn; 
    33 }
    34 int N;
    35 int C;
    36 int totedge;
    37 int sum;
    38 int tot;
    39 int main(){
    40     
    41     cin>>N>>C;
    42     for(int i=1;i<=N;i++){
    43         int a,b;
    44         cin>>a>>b;
    45         pos[i].x=a;
    46         pos[i].y=b;
    47     }
    48     
    49     for(int i=1;i<=N;i++){
    50         for(int j=1;j<=N;j++){
    51             edge[++totedge].left=i;
    52             edge[totedge].right=j;
    53             edge[totedge].cost=(pos[i].x-pos[j].x)*(pos[i].x-pos[j].x)+
    54                             (pos[i].y-pos[j].y)*(pos[i].y-pos[j].y);
    55         }
    56     }
    57     
    58     for(int i=1;i<=N;i++) fa[i]=i;
    59     sort(edge+1,edge+totedge+1,cmp);
    60     for(int i=1;i<=totedge;i++){
    61         if(edge[i].cost>=C){
    62             int h=edge[i].left;
    63             int g=edge[i].right;
    64             if(get_fa(h)!=get_fa(g)){
    65                 hehe(h,g);
    66                 sum+=edge[i].cost;
    67                 tot++;
    68                 if(tot==N-1) break;
    69             }
    70         }
    71     }
    72     
    73     if(tot==N-1) cout<<sum;
    74     if(tot<N-1) cout<<-1;
    75     return 0;
    76 } 
  • 相关阅读:
    配置Apache虚拟主机
    Apache: You don't have permission to access / on this server
    wordpress之备份与恢复数据
    ruby之各种概念
    Oracle之比较NVARCHAR2字符串
    Centos安装ruby--jekyll
    Linux之IO Redirection
    SecureCRT导入已有会话
    jdk1.8新特性应用之Iterable
    jdk1.8新特性应用之Collection
  • 原文地址:https://www.cnblogs.com/CXCXCXC/p/4703424.html
Copyright © 2020-2023  润新知