• LA 3890 半平面交


    二分查询答案,判断每一个新形成的向量合在一块能否形成半平面交

      1 #include <iostream>
      2 #include <cstdio>
      3 #include <cstring>
      4 #include <cmath>
      5 #include <algorithm>
      6 using namespace std;
      7 #define N 110
      8 #define eps 1e-7
      9 
     10 int dcmp(double x)
     11 {
     12     if(fabs(x)<eps) return 0;
     13     else return x<0?-1:1;
     14 }
     15 
     16 struct Point{
     17     double x , y;
     18     Point(double x=0 , double y=0):x(x),y(y){}
     19 }po[N] , poly[N];
     20 
     21 typedef Point Vector;
     22 Vector vec[N]; //记录每条边上对应的法向量
     23 
     24 Vector operator+(Vector a , Vector b) { return Vector(a.x+b.x , a.y+b.y); }
     25 Vector operator-(Point a , Point b) { return Vector(a.x-b.x , a.y-b.y); }
     26 Vector operator*(Vector a , double b) { return Vector(a.x*b , a.y*b); }
     27 Vector operator/(Vector a , double b) { return Vector(a.x/b , a.y/b); }
     28 bool operator==(const Point &a , const Point &b) { return dcmp(a.x-b.x) == 0 && dcmp(a.y-b.y) == 0; }
     29 
     30 double Dot(Vector a  , Vector b) { return a.x*b.x+a.y*b.y; }
     31 double Cross(Vector a , Vector b) { return a.x*b.y - b.x*a.y; }
     32 double Length(Vector a) { return sqrt(Dot(a,a)); }
     33 double Angle(Vector A , Vector B) { return acos(Dot(A,B)) / Length(A) / Length(B); }
     34 double Area2(Point A , Point B , Point C) { return Cross(B-A , C-A); }
     35 
     36 Vector Rotate(Vector A , double rad) { return Vector(A.x*cos(rad)-A.y*sin(rad) , A.x*sin(rad)+A.y*cos(rad)); }
     37 
     38 Vector Normal(Vector a)
     39 {
     40     double l = Length(a);
     41     return Vector(-a.y/l , a.x/l);
     42 }
     43 
     44 struct Line{
     45     Point P;
     46     Vector v;
     47     double ang;
     48     Line(){}
     49     Line(Point P , Vector v):P(P),v(v){ang = atan2(v.y,v.x);}
     50     bool operator<(const Line &m)const {
     51         return ang<m.ang;
     52     }
     53 }line[N] , L[N];
     54 
     55 bool OnLeft(Line L , Point P)
     56 {
     57     return Cross(L.v , P-L.P) > 0;
     58 }
     59 
     60 Point GetIntersection(Line a , Line b)
     61 {
     62     Vector u = a.P-b.P;
     63     double t = Cross(b.v , u) / Cross(a.v , b.v);
     64     return a.P+a.v*t;
     65 }
     66 
     67 /***半平面交的主过程,返回形成半平面交点的个数,无法形成就返回0***/
     68 int HalfplaneIntersection(Line *L , int n , Point *poly)
     69 {
     70     sort(L , L+n);
     71     int first , last;
     72     Point *p = new Point[n];
     73     Line *q = new Line[n];
     74     q[first=last=0] = L[0];
     75     for(int i=1 ; i<n ; i++)
     76     {
     77         while(first<last && !OnLeft(L[i] , p[last-1])) last--;
     78         while(first<last && !OnLeft(L[i] , p[first])) first++;
     79         q[++last] = L[i];
     80         if(fabs(Cross(q[last].v , q[last-1].v)) < eps)
     81         {
     82             last--;
     83             if(OnLeft(q[last] , L[i].P)) q[last]=L[i];
     84         }
     85         if(first<last) p[last-1] = GetIntersection(q[last-1] , q[last]);
     86     }
     87     while(first < last && !OnLeft(q[first] , p[last-1])) last--;
     88     //删除无用平面
     89     if(last-first<=1) return 0;
     90     p[last] = GetIntersection(q[last] , q[first]);
     91 
     92     //从deque复制到输出中
     93     int m=0;
     94     for(int i=first ; i<=last ; i++) poly[m++] = p[i];
     95     return m;
     96 }
     97 
     98 int main()
     99 {
    100    // freopen("a.in" , "r" , stdin);
    101     int n;
    102     while(scanf("%d" , &n) , n)
    103     {
    104         for(int i=0 ; i<n ; i++)
    105             scanf("%lf%lf" , &po[i].x , &po[i].y);
    106 
    107         for(int i=0 ; i<n ; i++) vec[i] = Normal(po[(i+1)%n]-po[i]);
    108         double l=0 , r=20000;
    109         while(r-l>eps){
    110             double m=(l+r)/2;
    111             for(int i=0 ; i<n ; i++) L[i] = Line(po[i]+vec[i]*m , po[(i+1)%n]-po[i]);
    112             if(HalfplaneIntersection(L , n , poly)>0) l=m;
    113             else r=m;
    114         }
    115         printf("%.6f
    " , l);
    116     }
    117     return 0;
    118 }
  • 相关阅读:
    datalist的用法
    SQL级联删除——删除主表同时删除从表——同时删除具有主外键关系的表
    js
    回调机制
    JS原型链
    多线程请求乌云链接
    Python高频技巧总结[基础篇]
    批量文本读取URL获取正常访问且保留对应IP
    Django基础之视图
    Django框架简介
  • 原文地址:https://www.cnblogs.com/CSU3901130321/p/4470760.html
Copyright © 2020-2023  润新知