• 最小生成树MST


    最小生成树(Minimum Spanning Trees)

    Kruskal算法和Prim算法都是典型的贪心算法。

    Kruskal

    Kruskal算法的时间为:O(ElgE)。
    ➢ 如果再注意到|E|<|V|2,则有lg|E|=O(lgV ),所以Kruskal算法的时间可表示为O(ElgV)。
    适合边数较少的情况。

    //kruskal-->MST
    #include<stdio.h>
    #include<stdlib.h>
    #include<string.h>
    
    typedef struct Edge {
    	int src, dest, weight;
    }Edge;
    
    typedef struct Graph {
    	int V, E;	//V: 总节点数  E: 总边数
    	Edge* edge;
    }Graph;
    
    Graph* createGraph(int V, int E) {
    	Graph* graph = new Graph;
    	graph->V = V;
    	graph->E = E;
    	graph->edge = new Edge[E];
    
    	return graph;
    }
    //union-find  并查集
    typedef struct subset {
    	int parent;
    	int rank;	//子树深度,合并时用
    }subset;
    
    int find(subset subsets[], int i) {
    	if (subsets[i].parent != i)
    		subsets[i].parent = find(subsets, subsets[i].parent);
    	return subsets[i].parent;
    }
    //合并 集合
    void Union(subset subsets[], int x, int y) {
    	int xroot = find(subsets, x);
    	int yroot = find(subsets, y);
    
    	if (subsets[xroot].rank < subsets[yroot].rank)
    		subsets[xroot].parent = yroot;
    	else if (subsets[xroot].rank > subsets[yroot].rank)
    		subsets[yroot].parent = xroot;
    	else {
    		subsets[yroot].parent = xroot;
    		subsets[xroot].rank++;
    	}
    }
    
    int mycomp(const void* a, const void* b) {
    	//	return ((Edge*)a)->weight > ((Edge*)b)->weight;
    	return (*(Edge*)a).weight > (*(Edge*)b).weight;
    }
    
    /*
    *边排序-> 遍历-> 符合条件加入
    */
    void KruskalMST(Graph* graph) {
    	int V = graph->V;
    	Edge* result = (Edge*)malloc(V * sizeof(Edge));
    	int e = 0;
    	int i = 0;
    	qsort(graph->edge, graph->E, sizeof(graph->edge[0]), mycomp);
    
    	subset* subsets = (subset*)malloc(V * sizeof(subset));
    	for (int v = 0; v < V; v++) {	//初始化V个并查集
    		subsets[v].parent = v;
    		subsets[v].rank = 0;
    	}
    	/*-------核心代码--------*/
    	while (e < V - 1 && i < graph->E) {		//V个点,V-1条边
    		Edge minEdge = graph->edge[i++];
    		int x = find(subsets, minEdge.src);
    		int y = find(subsets, minEdge.dest);
    
    		if (x != y) {
    			result[e++] = minEdge;
    			Union(subsets, x, y);
    		}
    	}
    	/*--------------------*/
    	printf("edges in MST:
    ");
    	int minCost = 0;
    	for (i = 0; i < e; i++) {
    		printf("%d ------ %d == %d
    ", result[i].src, result[i].dest, result[i].weight);
    		minCost += result[i].weight;
    	}
    	printf("minCost: %d
    ", minCost);
    	return;
    }
    
    int main() {
    	//煮个栗子
    	int V = 4;
    	int E = 5;
    	Graph* graph = createGraph(V, E);
    
    	graph->edge[0].src = 0;
    	graph->edge[0].dest = 1;
    	graph->edge[0].weight = 10;
    
    	graph->edge[1].src = 0;
    	graph->edge[1].dest = 2;
    	graph->edge[1].weight = 6;
    
    	graph->edge[2].src = 0;
    	graph->edge[2].dest = 3;
    	graph->edge[2].weight = 5;
    
    	graph->edge[3].src = 1;
    	graph->edge[3].dest = 3;
    	graph->edge[3].weight = 15;
    
    	graph->edge[4].src = 2;
    	graph->edge[4].dest = 3;
    	graph->edge[4].weight = 4;
    
    	KruskalMST(graph);
    	return 0;
    }
    

    切割

    无向图G=(V,E)的一个切割(S,V-S)是集合V的一个划分。

    横跨切割

    如果一条边(u,v)∈E的一个端点在集合S中,另一个端点在集合V-S中,则称该条边横跨切割(S,V-S)。

    尊 重

    如果边集A中不存在横跨该切割的边,则称该切割尊 重集合A。

    轻量级边

    在横跨一个切割的所有边中,权重最小的边称为轻量级边。
    ➢ 轻量级边可能不是唯一的。
    ➢ 一般,如果一条边是满足某个性质的所有边中权重最小的,则称该边是满足给定性质的一条轻量级边

  • 相关阅读:
    APP开发的模式
    微信小程序的传值方式
    面试题总结
    github上传文件的步骤
    python使用笔记15--操作Excel
    python使用笔记14--商品管理小练习
    python使用笔记13--清理日志小练习
    python使用笔记12--操作mysql数据库
    python使用笔记11--时间模块
    python使用笔记10--os,sy模块
  • 原文地址:https://www.cnblogs.com/CSE-kun/p/13972747.html
Copyright © 2020-2023  润新知