• HDOJ 4497 GCD and LCM


    组合数学

    GCD and LCM

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others)
    Total Submission(s): 451    Accepted Submission(s): 216


    Problem Description
    Given two positive integers G and L, could you tell me how many solutions of (x, y, z) there are, satisfying that gcd(x, y, z) = G and lcm(x, y, z) = L? 
    Note, gcd(x, y, z) means the greatest common divisor of x, y and z, while lcm(x, y, z) means the least common multiple of x, y and z. 
    Note 2, (1, 2, 3) and (1, 3, 2) are two different solutions.
     
    Input
    First line comes an integer T (T <= 12), telling the number of test cases. 
    The next T lines, each contains two positive 32-bit signed integers, G and L. 
    It’s guaranteed that each answer will fit in a 32-bit signed integer.
     
    Output
    For each test case, print one line with the number of solutions satisfying the conditions above.
     
    Sample Input
    2
    6 72
    7 33
     
    Sample Output
    72
    0
     
    Source
     
    Recommend
    liuyiding
     
     1 #include <iostream>
     2 #include <cstdio>
     3 #include <cstring>
     4 
     5 using namespace std;
     6 
     7 int main()
     8 {
     9     int t,L,G;
    10     scanf("%d",&t);
    11     while(t--)
    12     {
    13         scanf("%d%d",&G,&L);
    14         if(L%G!=0)
    15         {
    16             puts("0");
    17             continue;
    18         }
    19         int sk=L/G;
    20         int pp=2,ans=1,cnt;
    21         while(sk!=1)
    22         {
    23             cnt=0;
    24             while(sk%pp==0)
    25             {
    26                 cnt++;
    27                 sk/=pp;
    28             }
    29             pp++;
    30             if(cnt!=0)
    31             {
    32                 ans*=cnt*6;
    33             }
    34         }
    35         printf("%d
    ",ans);
    36     }
    37     return 0;
    38 }
  • 相关阅读:
    一个很大的数(计数、思维)
    第3章 图嵌入
    第一章 绪论
    区间最大值(数论分块)
    爬塔(set、括号匹配)
    第2章 图论基础
    V字钩爪(贪心)
    金牌厨师(二分、差分)
    Coprime(埃氏筛)
    Reordering(组合计数)
  • 原文地址:https://www.cnblogs.com/CKboss/p/3373031.html
Copyright © 2020-2023  润新知