• 《剑指offer》第十题(斐波那契数列)


    // 面试题:斐波那契数列
    // 题目:写一个函数,输入n,求斐波那契(Fibonacci)数列的第n项。
    
    #include <iostream>
    
    using namespace std;
    
    // ====================方法1:递归====================
    //注意这种递归方法虽然看起来很简单,但是由于压入栈和弹出,会存在栈溢出的可能,而且效率特别慢,且n越大效率越慢
    long long Fibonacci_Solution1(unsigned int n)//注意long long
    {
        if (n <= 0)
            return 0;
    
        if (n == 1)
            return 1;
    
        return Fibonacci_Solution1(n - 1) + Fibonacci_Solution1(n - 2);
    }
    
    // ====================方法2:循环====================
    //这是一种简单的方法,时间复杂度O(n),值得提倡
    long long Fibonacci_Solution2(unsigned n)
    {
        int result[2] = { 0, 1 };//注意头两个数我们无法计算,直接给出
        if (n < 2)
            return result[n];
    
        long long  fibNMinusOne = 1;
        long long  fibNMinusTwo = 0;
        long long  fibN = 0;
        for (unsigned int i = 2; i <= n; ++i)
        {
            fibN = fibNMinusOne + fibNMinusTwo;
    
            fibNMinusTwo = fibNMinusOne;
            fibNMinusOne = fibN;
        }
    
        return fibN;
    }
    
    // ====================方法3:基于矩阵乘法====================
    //不常见但是时间复杂度更低: O(logn)
    
    struct Matrix2By2
    {
        Matrix2By2(long long m00 = 0, long long m01 = 0, long long m10 = 0, long long m11 = 0)
        {
            m_00 = m00;
            m_01 = m01;
            m_10 = m10;
            m_11 = m11;
        }
        //Matrix2By2(long long m00 = 0, long long m01 = 0, long long m10 = 0, long long m11 = 0) :m_00(m00), m_01(m01), m_10(m10), m_11(m11) {}
        //也可以写成上面这个形式,都是含参具有默认值的构造函数,是参数列表外初始化
    
        long long m_00;
        long long m_01;
        long long m_10;
        long long m_11;
    };
    
    Matrix2By2 MatrixMultiply(const Matrix2By2& matrix1,const Matrix2By2& matrix2)//矩阵乘法
    {
        return Matrix2By2(
            matrix1.m_00 * matrix2.m_00 + matrix1.m_01 * matrix2.m_10,
            matrix1.m_00 * matrix2.m_01 + matrix1.m_01 * matrix2.m_11,
            matrix1.m_10 * matrix2.m_00 + matrix1.m_11 * matrix2.m_10,
            matrix1.m_10 * matrix2.m_01 + matrix1.m_11 * matrix2.m_11);
    }
    
    Matrix2By2 MatrixPower(unsigned int n)
    {
        Matrix2By2 matrix;
        if (n == 1)//第一种情况:n=1,返回矩阵(1, 1, 1, 0)
        {
            matrix = Matrix2By2(1, 1, 1, 0);
        }
        else if (n % 2 == 0)//第二种情况:n为偶数,递归求a^(n/2),然后乘回来
        {
            matrix = MatrixPower(n / 2);
            matrix = MatrixMultiply(matrix, matrix);
        }
        else if (n % 2 == 1)//第三种情况:n为奇数数,用第二种情况递归求a^((n-1)/2),然后乘回来后,再乘一次(1, 1, 1, 0)
        {
            matrix = MatrixPower((n - 1) / 2);
            matrix = MatrixMultiply(matrix, matrix);
            matrix = MatrixMultiply(matrix, Matrix2By2(1, 1, 1, 0));
        }
    
        return matrix;
    }
    
    long long Fibonacci_Solution3(unsigned int n)
    {
        int result[2] = { 0, 1 };//注意头两个数我们无法计算,直接给出
        if (n < 2)
            return result[n];
    
        Matrix2By2 PowerNMinus2 = MatrixPower(n - 1);
        return PowerNMinus2.m_00;
    }
    
    // ====================测试代码====================
    void Test(int n, int expected)
    {
        if (Fibonacci_Solution1(n) == expected)
            printf("Test for %d in solution1 passed.
    ", n);
        else
            printf("Test for %d in solution1 failed.
    ", n);
    
        if (Fibonacci_Solution2(n) == expected)
            printf("Test for %d in solution2 passed.
    ", n);
        else
            printf("Test for %d in solution2 failed.
    ", n);
    
        if (Fibonacci_Solution3(n) == expected)
            printf("Test for %d in solution3 passed.
    ", n);
        else
            printf("Test for %d in solution3 failed.
    ", n);
    }
    
    int main(int argc, char* argv[])
    {
        Test(0, 0);
        Test(1, 1);
        Test(2, 1);
        Test(3, 2);
        Test(4, 3);
        Test(5, 5);
        Test(6, 8);
        Test(7, 13);
        Test(8, 21);
        Test(9, 34);
        Test(10, 55);
    
        Test(40, 102334155);
    
        system("pause");
    }

     第三种想法思路:

    斐波那契数列扩展:

  • 相关阅读:
    httpd添加新模块
    编译httpd细节
    apache配置文件说明及一些指令
    xen原理
    EXSI的使用
    VMWare ESX server安装
    虚拟化技术
    Kvm命令集管理虚拟机
    RAID几种方式
    BZOJ1011 [HNOI2008]遥远的行星 【奇技淫巧】
  • 原文地址:https://www.cnblogs.com/CJT-blog/p/10477461.html
Copyright © 2020-2023  润新知