• HDU 4443 带环树形dp


    思路:如果只有一棵树这个问题很好解决,dp一次,然后再dfs一次往下压求答案就好啦,带环的话,考虑到环上的点不是

    很多,可以暴力处理出环上的信息,然后最后一次dfs往下压求答案就好啦。细节比较多。

    #include<bits/stdc++.h>
    #define LL long long
    #define fi first
    #define se second
    #define mk make_pair
    #define PII pair<int, int>
    #define PLI pair<LL, int>
    #define ull unsigned long long
    using namespace std;
    
    const int N = 1e5 + 7;
    const int inf = 0x3f3f3f3f;
    const LL INF = 0x3f3f3f3f3f3f3f3f;
    const int mod = 1e9 + 7;
    const double eps = 1e-8;
    
    double ans[N], dp[N], up[N], down[N];
    int n, m, tot, head[N], deg[N], edgecnt[N];
    bool is[N], vis[N];
    vector<int> cir;
    struct Edge {
        int from, to, nx;
    } edge[N<<1];
    
    void addEdge(int u, int v) {
        edge[tot].from = u;
        edge[tot].to = v;
        edge[tot].nx = head[u];
        head[u] = tot++;
    }
    void dfs(int u) {
        vis[u] = true;
        cir.push_back(u);
        for(int i = head[u]; ~i; i = edge[i].nx) {
            int v = edge[i].to;
            if(is[v] || vis[v]) continue;
            dfs(v);
        }
    }
    
    void dfs1(int u, int fa) {
        edgecnt[u] = 0;
        for(int i = head[u]; ~i; i = edge[i].nx) {
            if(edge[i].to == fa || !is[edge[i].to]) continue;
            int v = edge[i].to;
            edgecnt[u]++;
            dfs1(v, u);
        }
        dp[u] = 1.0 / (edgecnt[u]+1);
        if(edgecnt[u]) {
            for(int i = head[u]; ~i; i = edge[i].nx) {
                if(edge[i].to == fa || !is[edge[i].to]) continue;
                int v = edge[i].to;
                dp[u] += dp[v] / edgecnt[u];
            }
        }
    }
    
    void dfs2(int u, int fa, double val) {
        if(!edgecnt[u]) {
            ans[u] += val;
            return;
        }
        double sum = 0;
        for(int i = head[u]; ~i; i = edge[i].nx) {
            if(edge[i].to == fa || !is[edge[i].to]) continue;
            sum += dp[edge[i].to];
        }
        if(!fa) {
            for(int i = head[u]; ~i; i = edge[i].nx) {
                if(edge[i].to == fa || !is[edge[i].to]) continue;
                int v = edge[i].to;
                if(edgecnt[u] == 1) dfs2(v, u, 1.0/(edgecnt[u]+2)+val);
                else dfs2(v, u, 1.0/(edgecnt[u]+2)+val/edgecnt[u]+(sum-dp[v])/(edgecnt[u]+1));
            }
        } else {
            for(int i = head[u]; ~i; i = edge[i].nx) {
                if(edge[i].to == fa || !is[edge[i].to]) continue;
                int v = edge[i].to;
                dfs2(v, u, 1.0/(edgecnt[u]+1)+val/edgecnt[u]+(sum-dp[v])/edgecnt[u]);
            }
        }
    }
    
    void init() {
        tot = 0; cir.clear();
        for(int i = 1; i <= n; i++)
            head[i]=-1, ans[i]=deg[i]=is[i]=vis[i]=0;
    }
    
    int main() {
        while(scanf("%d", &n) != EOF && n) {
            init();
            for(int i = 1; i <= n; i++) {
                int u, v; scanf("%d%d", &u, &v);
                addEdge(u, v); addEdge(v, u);
                deg[u]++, deg[v]++;
            }
            queue<int> que;
            for(int i = 1; i <= n; i++) {
                if(deg[i] == 1) {
                    que.push(i);
                    is[i] = true;
                }
            }
            while(!que.empty()) {
                int u = que.front(); que.pop();
                for(int i = head[u]; ~i; i = edge[i].nx) {
                    int v = edge[i].to;
                    if(is[v]) continue;
                    deg[v]--, deg[u]--;
                    if(deg[v] == 1) {
                        is[v] = true;
                        que.push(v);
                    }
                }
            }
    
            for(int i = 1; i <= n; i++)
                if(!is[i] && !vis[i]) dfs(i);
    
            int cnt = cir.size();
            for(int i = 0; i < cnt; i++) {
                int root = cir[i];
                dfs1(root, 0);
                up[root] = 1.0*2/(edgecnt[root]+2); down[root] = 0;
                for(int j = head[root]; ~j; j = edge[j].nx) {
                    int v = edge[j].to;
                    if(!is[v]) continue;
                    up[root] += dp[v]*2/(edgecnt[root]+1);
                }
            }
    
            for(int i = 0; i < cnt; i++) {
                double now = up[cir[i]]/2;
                for(int k = 1; k < cnt; k++) {
                    int j = (i+k)%cnt;
                    if(k == cnt-1) down[cir[j]] += now;
                    else down[cir[j]] += now*(edgecnt[cir[j]])/(edgecnt[cir[j]]+1);
                    now /= edgecnt[cir[j]]+1;
                }
                now = up[cir[i]]/2;
                for(int k = 1; k < cnt; k++) {
                    int j = (i-k+cnt)%cnt;
                    if(k == cnt-1) down[cir[j]] += now;
                    else down[cir[j]] += now*(edgecnt[cir[j]])/(edgecnt[cir[j]]+1);
                    now /= edgecnt[cir[j]]+1;
                }
            }
            for(int i = 0; i < cnt; i++)
                dfs2(cir[i], 0, down[cir[i]]);
    
    
            sort(ans+1, ans+1+n);
            reverse(ans+1, ans+1+n);
            double ret = 0;
            for(int i = 1; i <= 5; i++)
                ret += ans[i];
            printf("%.5f
    ", ret/n);
        }
        return 0;
    }
    
    /*
    */
  • 相关阅读:
    jQuery火箭图标返回顶部代码
    jQuery火箭图标返回顶部代码
    jQuery火箭图标返回顶部代码
    jQuery火箭图标返回顶部代码
    jQuery火箭图标返回顶部代码
    jQuery火箭图标返回顶部代码
    jQuery火箭图标返回顶部代码
    jQuery火箭图标返回顶部代码
    jQuery火箭图标返回顶部代码
    jQuery火箭图标返回顶部代码
  • 原文地址:https://www.cnblogs.com/CJLHY/p/9855636.html
Copyright © 2020-2023  润新知