• HDU


    HDU - 5735

    感觉还是对容斥不够熟悉啊。。

    先用轮廓线dp求出f[ i ][ j ]表示 i 行 j 列 没有限制的方案数。

    然后2^m枚举列的划分情况进行容斥。

    对于每一种情况

    t[ i ] 表示这种情况下, i 行没有限制的方案数。

    g[ i ]表示这种情况下, i 行并且没有可以划分的行的方案数。

    g[ i ] 可以从 t[ i ] 推过来。

    #pragma GCC optimize(2)
    #pragma GCC optimize(3)
    #include<bits/stdc++.h>
    #define LL long long
    #define LD long double
    #define ull unsigned long long
    #define fi first
    #define se second
    #define mk make_pair
    #define PLL pair<LL, LL>
    #define PLI pair<LL, int>
    #define PII pair<int, int>
    #define SZ(x) ((int)x.size())
    #define ALL(x) (x).begin(), (x).end()
    #define fio ios::sync_with_stdio(false); cin.tie(0);
    
    using namespace std;
    
    const int N = 2e5 + 7;
    const int inf = 0x3f3f3f3f;
    const LL INF = 0x3f3f3f3f3f3f3f3f;
    const int mod = (int)1e9 + 7;
    const double eps = 1e-8;
    const double PI = acos(-1);
    
    template<class T, class S> inline void add(T& a, S b) {a += b; if(a >= mod) a -= mod;}
    template<class T, class S> inline void sub(T& a, S b) {a -= b; if(a < 0) a += mod;}
    template<class T, class S> inline bool chkmax(T& a, S b) {return a < b ? a = b, true : false;}
    template<class T, class S> inline bool chkmin(T& a, S b) {return a > b ? a = b, true : false;}
    
    //mt19937 rng(chrono::steady_clock::now().time_since_epoch().count());
    
    int f[17][17] = {
    {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
    {0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1},
    {0, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597},
    {0, 0, 3, 0, 11, 0, 41, 0, 153, 0, 571, 0, 2131, 0, 7953, 0, 29681},
    {0, 1, 5, 11, 36, 95, 281, 781, 2245, 6336, 18061, 51205, 145601, 413351, 1174500, 3335651, 9475901},
    {0, 0, 8, 0, 95, 0, 1183, 0, 14824, 0, 185921, 0, 2332097, 0, 29253160, 0, 366944287},
    {0, 1, 13, 41, 281, 1183, 6728, 31529, 167089, 817991, 4213133, 21001799, 106912793, 536948224, 720246619, 704300462, 289288426},
    {0, 0, 21, 0, 781, 0, 31529, 0, 1292697, 0, 53175517, 0, 188978103, 0, 124166811, 0, 708175999},
    {0, 1, 34, 153, 2245, 14824, 167089, 1292697, 12988816, 108435745, 31151234, 940739768, 741005255, 164248716, 498190405, 200052235, 282756494},
    {0, 0, 55, 0, 6336, 0, 817991, 0, 108435745, 0, 479521663, 0, 528655152, 0, 764896039, 0, 416579196},
    {0, 1, 89, 571, 18061, 185921, 4213133, 53175517, 31151234, 479521663, 584044562, 472546535, 732130620, 186229290, 274787842, 732073997, 320338127},
    {0, 0, 144, 0, 51205, 0, 21001799, 0, 940739768, 0, 472546535, 0, 177126748, 0, 513673802, 0, 881924366},
    {0, 1, 233, 2131, 145601, 2332097, 106912793, 188978103, 741005255, 528655152, 732130620, 177126748, 150536661, 389322891, 371114062, 65334618, 119004311},
    {0, 0, 377, 0, 413351, 0, 536948224, 0, 164248716, 0, 186229290, 0, 389322891, 0, 351258337, 0, 144590622},
    {0, 1, 610, 7953, 1174500, 29253160, 720246619, 124166811, 498190405, 764896039, 274787842, 513673802, 371114062, 351258337, 722065660, 236847118, 451896972},
    {0, 0, 987, 0, 3335651, 0, 704300462, 0, 200052235, 0, 732073997, 0, 65334618, 0, 236847118, 0, 974417347},
    {0, 1, 1597, 29681, 9475901, 366944287, 289288426, 708175999, 282756494, 416579196, 320338127, 881924366, 119004311, 144590622, 451896972, 974417347, 378503901}
    };
    
    int n, m;
    int g[N], t[N];
    vector<int> V;
    
    int main() {
        while(scanf("%d%d", &n, &m) != EOF) {
            int ans = 0;
            for(int mask = 0; mask < (1 << m - 1); mask++) {
                int op = 1;
                V.clear();
                int last = 0;
                for(int j = 0; j < m - 1; j++) {
                    if(mask >> j & 1) {
                        V.push_back(j + 1 - last);
                        last = j + 1;
                        op = -op;
                    }
                }
                V.push_back(m - last);
                for(int i = 1; i <= n; i++) {
                    t[i] = 1;
                    for(auto &b : V) {
                        t[i] = 1LL * t[i] * f[i][b] % mod;
                    }
                }
                g[1] = t[1];
                for(int i = 2; i <= n; i++) {
                    g[i] = t[i];
                    for(int j = 1; j < i; j++) {
                        sub(g[i], 1LL * g[j] * t[i - j] % mod);
                    }
                }
                if(op > 0) add(ans, g[n]);
                else sub(ans, g[n]);
            }
            printf("%d
    ", ans);
        }
        return 0;
    }
    
    /*
    */
  • 相关阅读:
    mysql mgr集群部署
    单节点的cratedb添加一个节点组成一个集群
    单节点的es添加另外一个节点组成主从集群
    mongodb3.0.1副本集安装部署(仲裁节点模式)
    mongodb从库的登陆执行命令不用每次输入slaveOk
    redis4.0集群部署
    ssdb双主部署
    threaded_execution参数开启的情况下导致ogg无法注册
    cratedb备份迁移到新的机器
    cratedb备份和恢复
  • 原文地址:https://www.cnblogs.com/CJLHY/p/11544363.html
Copyright © 2020-2023  润新知