• HDU


    HDU - 5361

    直接用线段树维护最短路, 每次取出最小的去扩展。

    好像还有nb的并查集写法。

    #pragma GCC optimize(2)
    #pragma GCC optimize(3)
    #pragma GCC optimize(4)
    #include<bits/stdc++.h>
    #define LL long long
    #define LD long double
    #define ull unsigned long long
    #define fi first
    #define se second
    #define mk make_pair
    #define PLL pair<LL, LL>
    #define PLI pair<LL, int>
    #define PII pair<int, int>
    #define SZ(x) ((int)x.size())
    #define ALL(x) (x).begin(), (x).end()
    #define fio ios::sync_with_stdio(false); cin.tie(0);
    
    using namespace std;
    
    const int N = 2e5 + 7;
    const int inf = 0x3f3f3f3f;
    const LL INF = 0x3f3f3f3f3f3f3f3f;
    const int mod = 1e9 + 7;
    const double eps = 1e-8;
    const double PI = acos(-1);
    
    template<class T, class S> inline void add(T &a, S b) {a += b; if(a >= mod) a -= mod;}
    template<class T, class S> inline void sub(T &a, S b) {a -= b; if(a < 0) a += mod;}
    template<class T, class S> inline bool chkmax(T &a, S b) {return a < b ? a = b, true : false;}
    template<class T, class S> inline bool chkmin(T &a, S b) {return a > b ? a = b, true : false;}
    
    mt19937 rng(chrono::steady_clock::now().time_since_epoch().count());
    
    int n, l[N], r[N], c[N];
    LL ans[N];
    
    struct SegmentTree {
    #define lson l, mid, rt << 1
    #define rson mid + 1, r, rt << 1 | 1
        LL mn[N << 2], id[N << 2], lazy[N << 2];
        inline void pull(int rt) {
            if(mn[rt << 1] == -1) {
                mn[rt] = mn[rt << 1 | 1];
                id[rt] = id[rt << 1 | 1];
            }
            else if(mn[rt << 1 | 1] == -1) {
                mn[rt] = mn[rt << 1];
                id[rt] = id[rt << 1];
            }
            else if(mn[rt << 1] <= mn[rt << 1 | 1]) {
                mn[rt] = mn[rt << 1];
                id[rt] = id[rt << 1];
            }
            else {
                mn[rt] = mn[rt << 1 | 1];
                id[rt] = id[rt << 1 | 1];
            }
        }
        inline void push(int rt) {
            if(lazy[rt] < INF) {
                chkmin(mn[rt << 1], lazy[rt]);
                chkmin(mn[rt << 1 | 1], lazy[rt]);
                chkmin(lazy[rt << 1], lazy[rt]);
                chkmin(lazy[rt << 1 | 1], lazy[rt]);
                lazy[rt] = INF;
            }
        }
        void build(int l, int r, int rt) {
            lazy[rt] = INF;
            if(l == r) {
                mn[rt] = INF;
                id[rt] = l;
                return;
            }
            int mid = l + r >> 1;
            build(lson); build(rson);
            pull(rt);
        }
        void update(int L, int R, LL val, int l, int r, int rt) {
            if(R < l || r < L || R < L) return;
            if(L <= l && r <= R) {
                chkmin(mn[rt], val);
                chkmin(lazy[rt], val);
                return;
            }
            push(rt);
            int mid = l + r >> 1;
            update(L, R, val, lson);
            update(L, R, val, rson);
            pull(rt);
        }
    } Tree;
    
    int main() {
        int T; scanf("%d", &T);
        while(T--) {
            scanf("%d", &n);
            for(int i = 1; i <= n; i++) {
                scanf("%d", &l[i]);
                ans[i] = -1;
            }
            for(int i = 1; i <= n; i++) {
                scanf("%d", &r[i]);
            }
            for(int i = 1; i <= n; i++) {
                scanf("%d", &c[i]);
            }
            Tree.build(1, n, 1);
            Tree.update(1, 1, 0, 1, n, 1);
            int L, R;
            while(Tree.mn[1] != -1 && Tree.mn[1] != INF) {
                LL dis = Tree.mn[1];
                if(dis == INF) break;
                int u = Tree.id[1];
                ans[u] = dis;
                L = max(1, u - r[u]);
                R = u - l[u];
                Tree.update(L, R, dis + c[u], 1, n, 1);
                R = min(n, u + r[u]);
                L = u + l[u];
                Tree.update(L, R, dis + c[u], 1, n, 1);
                Tree.update(u, u, -1, 1, n, 1);
            }
            for(int i = 1; i <= n; i++) {
                printf("%lld%c", ans[i], " 
    "[i == n]);
            }
        }
        return 0;
    }
    
    /*
    */
  • 相关阅读:
    出现( linker command failed with exit code 1)错误总结 (转)
    iOS 面试题
    iOS 网络-深入浅出 -> 三方SDWebImage
    免费的论文查重网站
    关于GCD中单例的实现,不仅仅是 dispatch_once(视图完整版)
    Objective
    iOS 实现代码编写中 字典属性的可读性
    iOS Category 和 Protocol 中的 Property 你们真的会了么?
    iOS 中的观察者模式之通知中心
    iOS中的 观察者模式 之 KVO
  • 原文地址:https://www.cnblogs.com/CJLHY/p/11201708.html
Copyright © 2020-2023  润新知