• Codeforces 1083E The Fair Nut and Rectangles dp + 斜率优化


    The Fair Nut and Rectangles

    很裸的斜率优化呀。  

    维护直线

    #include<bits/stdc++.h>
    #define LL long long
    #define LD long double
    #define ull unsigned long long
    #define fi first
    #define se second
    #define mk make_pair
    #define PLL pair<LL, LL>
    #define PLI pair<LL, int>
    #define PII pair<int, int>
    #define SZ(x) ((int)x.size())
    #define ALL(x) (x).begin(), (x).end()
    #define fio ios::sync_with_stdio(false); cin.tie(0);
     
    using namespace std;
     
    const int N = 1e6 + 7;
    const int inf = 0x3f3f3f3f;
    const LL INF = 0x3f3f3f3f3f3f3f3f;
    const int mod = 1e9 + 7;
    const double eps = 1e-8;
    const double PI = acos(-1);
     
    template<class T, class S> inline void add(T &a, S b) {a += b; if(a >= mod) a -= mod;}
    template<class T, class S> inline void sub(T &a, S b) {a -= b; if(a < 0) a += mod;}
    template<class T, class S> inline bool chkmax(T &a, S b) {return a < b ? a = b, true : false;}
    template<class T, class S> inline bool chkmin(T &a, S b) {return a > b ? a = b, true : false;}
     
    mt19937 rng(chrono::steady_clock::now().time_since_epoch().count());
     
    namespace LC {
    /**
     * Description: Container where you can add lines of the form kx+m, and query maximum values at points x.
     * Time: O(log N)
     */
     
    struct Line {
        mutable LL k, m, p;
        bool operator < (const Line& o) const { return k < o.k; }
        bool operator < (LL x) const { return p < x; }
    };
     
    struct LineContainer : multiset<Line, less<>> {
        // (for doubles, use inf = 1/.0, div(a,b) = a/b)
        const LL inf = LLONG_MAX;
        LL div(LL a, LL b) { // floored division
            return a / b - ((a ^ b) < 0 && a % b);
        }
        bool isect(iterator x, iterator y) {
            if (y == end()) { x->p = inf; return false; }
            if (x->k == y->k) x->p = x->m > y->m ? inf : -inf;
            else x->p = div(y->m - x->m, x->k - y->k);
            return x->p >= y->p;
        }
        void add(LL k, LL m) {
            auto z = insert({k, m, 0}), y = z++, x = y;
            while (isect(y, z)) z = erase(z);
            if (x != begin() && isect(--x, y)) isect(x, y = erase(y));
            while ((y = x) != begin() && (--x)->p >= y->p)
                isect(x, erase(y));
        }
        LL query(LL x) {
            assert(!empty());
            auto l = *lower_bound(x);
            return l.k * x + l.m;
        }
    };
    }
     
    int n;
    LL dp[N];
     
    struct Node {
        int x, y;
        LL v;
        bool operator < (const Node &rhs) const {
            return x < rhs.x;
        }
    } a[N];
     
    int main() {
     
        scanf("%d", &n);
        for(int i = 1; i <= n; i++) {
            scanf("%d%d%lld", &a[i].x, &a[i].y, &a[i].v);
        }
     
        sort(a + 1, a + 1 + n);
     
        LC::LineContainer cont;
        cont.add(0, 0);
     
        LL ans = 0;
     
        for(int i = 1; i <= n; i++) {
            int x = a[i].x, y = a[i].y;
            LL v = a[i].v;
            dp[i] = cont.query(y) + 1LL * x * y - v;
            cont.add(-x, dp[i]);
            chkmax(ans, dp[i]);
        }
     
        printf("%lld
    ", ans);
     
        return 0;
    }
     
    /*
    */

    维护凸包

    #include<bits/stdc++.h>
    #define LL long long
    #define LD long double
    #define ull unsigned long long
    #define fi first
    #define se second
    #define mk make_pair
    #define PLL pair<LL, LL>
    #define PLI pair<LL, int>
    #define PII pair<int, int>
    #define SZ(x) ((int)x.size())
    #define ALL(x) (x).begin(), (x).end()
    #define fio ios::sync_with_stdio(false); cin.tie(0);
    
    using namespace std;
    
    const int N = 1e6 + 7;
    const int inf = 0x3f3f3f3f;
    const LL INF = 0x3f3f3f3f3f3f3f3f;
    const int mod = 1e9 + 7;
    const double eps = 1e-8;
    const double PI = acos(-1);
    
    template<class T, class S> inline void add(T &a, S b) {a += b; if(a >= mod) a -= mod;}
    template<class T, class S> inline void sub(T &a, S b) {a -= b; if(a < 0) a += mod;}
    template<class T, class S> inline bool chkmax(T &a, S b) {return a < b ? a = b, true : false;}
    template<class T, class S> inline bool chkmin(T &a, S b) {return a > b ? a = b, true : false;}
    
    mt19937 rng(chrono::steady_clock::now().time_since_epoch().count());
    
    int n;
    int que[N], be, ed;
    LL dp[N];
    
    struct Node {
        int x, y;
        LL v;
        bool operator < (const Node &rhs) const {
            return x < rhs.x;
        }
    } a[N];
    
    LD calc(int i, int j) {
        return ((LD)dp[j] - dp[i]) / (a[j].x - a[i].x);
    }
    
    int main() {
    
        scanf("%d", &n);
        for(int i = 1; i <= n; i++) {
            scanf("%d%d%lld", &a[i].x, &a[i].y, &a[i].v);
            a[i].v = 1LL * a[i].x * a[i].y - a[i].v;
        }
    
        sort(a + 1, a + 1 + n);
    
        be = 1; ed = 0;
        que[++ed] = 0;
    
        LL ans = 0;
        for(int i = 1; i <= n; i++) {
            int x = a[i].x, y = a[i].y;
            LL v = a[i].v;
            while(ed - be >= 1 && calc(que[be + 1], que[be]) >= y) be++;
            int id = que[be];
            dp[i] = dp[id] + - 1LL * y * a[id].x + v;
            while(ed - be >= 1 && calc(que[ed], que[ed - 1]) <= calc(i, que[ed])) ed--;
            que[++ed] = i;
            chkmax(ans, dp[i]);
        }
    
        printf("%lld
    ", ans);
    
        return 0;
    }
    
    /*
    */
  • 相关阅读:
    C语言 · 字符串输入输出函数
    C语言 · 判定字符位置
    剑指offer二之替换空格
    剑指offer一之二维数组中的查找
    算法复杂度:时间复杂度与空间复杂度
    二分查找法
    信息熵
    K-means算法的原理、优缺点及改进(转)
    office2013安装与卸载
    Deep Learning (中文版&英文版)
  • 原文地址:https://www.cnblogs.com/CJLHY/p/11164097.html
Copyright © 2020-2023  润新知