• Codeforces 576D Flights for Regular Customers 矩阵快速幂 (看题解)


    Flights for Regular Customers

     临接矩阵的 k 次 就是 恰好 走 k 步从 i 走到 j 的方案数, 方案数在这里并不关键, 所以可以把它变成01矩阵。

    一个很直观的想法是用二分取check它, 但是这并不单调。。 然后就不会了。。 

    我们可以把G[ n - 1] [ n - 1 ] 变成  1 , 这个函数就变成单调了, 然后直接二分check就好了, 可以用bitset优化一下, 不优化其实也能过。

    还有一种方法就是, 每新加入一条边, 我们暴力跑一遍图取check就好啦。

    #include<bits/stdc++.h>
    #define LL long long
    #define LD long double
    #define ull unsigned long long
    #define fi first
    #define se second
    #define mk make_pair
    #define PLL pair<LL, LL>
    #define PLI pair<LL, int>
    #define PII pair<int, int>
    #define SZ(x) ((int)x.size())
    #define ALL(x) (x).begin(), (x).end()
    #define fio ios::sync_with_stdio(false); cin.tie(0);
    
    using namespace std;
    
    const int N = 150 + 7;
    const int inf = 0x3f3f3f3f;
    const LL INF = 0x3f3f3f3f3f3f3f3f;
    const int mod = 1e9 + 7;
    const double eps = 1e-8;
    const double PI = acos(-1);
    
    template<class T, class S> inline void add(T& a, S b) {a += b; if(a >= mod) a -= mod;}
    template<class T, class S> inline void sub(T& a, S b) {a -= b; if(a < 0) a += mod;}
    template<class T, class S> inline bool chkmax(T& a, S b) {return a < b ? a = b, true : false;}
    template<class T, class S> inline bool chkmin(T& a, S b) {return a > b ? a = b, true : false;}
    
    const int MN = 150;
    
    struct Matrix {
        bitset<MN> a[MN];
        void init() {
            for(int i = 0; i < MN; i++)
                a[i][i] = 1;
        }
        void setVal(int c[MN][MN]) {
            for(int i = 0; i < MN; i++)
                for(int j = 0; j < MN; j++)
                    a[i][j] = c[i][j];
        }
        Matrix operator * (const Matrix& B) const {
            Matrix C;
            for(int i = 0; i < MN; i++)
                for(int j = 0; j < MN; j++)
                    if(a[i][j]) C.a[i] |= B.a[j];
            return C;
        }
        Matrix operator ^ (LL b) {
            Matrix C; C.init();
            Matrix A = *this;
            while(b) {
                if(b & 1) C = C * A;
                A = A * A; b >>= 1;
            }
            return C;
        }
    } mat[N], now[N], tmp;
    
    int n, m, a[N], b[N], d[N];
    int G[MN][MN];
    vector<int> oo;
    vector<PII> edge[N];
    
    int main() {
        scanf("%d%d", &n, &m);
        for(int i = 0; i < m; i++) {
            scanf("%d%d%d", &a[i], &b[i], &d[i]);
            a[i]--; b[i]--;
            oo.push_back(d[i]);
        }
        oo.push_back(0);
        sort(ALL(oo));
        oo.erase(unique(ALL(oo)), oo.end());
        for(int i = 0; i < m; i++) {
            edge[lower_bound(ALL(oo), d[i]) - oo.begin()].push_back(mk(a[i], b[i]));
        }
        tmp.init();
        int p = SZ(oo) - 1;
        G[n - 1][n - 1] = 1;
        for(int i = 0; i < SZ(oo); i++) {
            now[i] = tmp;
            if(now[i].a[0][n - 1]) {
                p = i - 1;
                break;
            }
            for(auto& e : edge[i]) {
                G[e.fi][e.se] = 1;
            }
            mat[i].setVal(G);
            if(i == SZ(oo) - 1) break;
            tmp = tmp * (mat[i] ^ (oo[i + 1] - oo[i]));
        }
        Matrix gg;
        int low = 1, high = p == SZ(oo) - 1 ? 1000000200 : oo[p + 1] - oo[p], mid, step = -1;
        while(low <= high) {
            mid = low + high >> 1;
            gg = now[p] * (mat[p] ^ mid);
            if(gg.a[0][n - 1]) high = mid - 1, step = mid;
            else low = mid + 1;
        }
        if(~step) printf("%d
    ", oo[p] + step);
        else puts("Impossible");
        return 0;
    }
    
    /*
    */
  • 相关阅读:
    Traits——信息输入界面
    Traits——安装/第一个界面
    opencv——如何安装opencv—python
    python——如何将列表中的元素全部取出来变成列表
    Pandas——循环路径下的文件将所有的txt文件进行合并
    股票交易
    良知?
    同源策略
    同步 异步 阻塞 非阻塞
    线程安全
  • 原文地址:https://www.cnblogs.com/CJLHY/p/10818940.html
Copyright © 2020-2023  润新知