• Codeforces 1109D Sasha and Interesting Fact from Graph Theory (看题解) 组合数学


    Sasha and Interesting Fact from Graph Theory

    n 个 点形成 m 个有标号森林的方案数为 F(n, m) = m * n ^ {n - 1 - m}

    然后就没啥难度了。。。

    #include<bits/stdc++.h>
    #define LL long long
    #define LD long double
    #define ull unsigned long long
    #define fi first
    #define se second
    #define mk make_pair
    #define PLL pair<LL, LL>
    #define PLI pair<LL, int>
    #define PII pair<int, int>
    #define SZ(x) ((int)x.size())
    #define ALL(x) (x).begin(), (x).end()
    #define fio ios::sync_with_stdio(false); cin.tie(0);
    
    using namespace std;
    
    const int N = 1e6 + 7;
    const int inf = 0x3f3f3f3f;
    const LL INF = 0x3f3f3f3f3f3f3f3f;
    const int mod = 1e9 + 7;
    const double eps = 1e-8;
    const double PI = acos(-1);
    
    template<class T, class S> inline void add(T& a, S b) {a += b; if(a >= mod) a -= mod;}
    template<class T, class S> inline void sub(T& a, S b) {a -= b; if(a < 0) a += mod;}
    template<class T, class S> inline bool chkmax(T& a, S b) {return a < b ? a = b, true : false;}
    template<class T, class S> inline bool chkmin(T& a, S b) {return a > b ? a = b, true : false;}
    
    int power(int a, int b) {
        int ans = 1;
        while(b) {
            if(b & 1) ans = 1LL * ans * a % mod;
            a = 1LL * a * a % mod; b >>= 1;
        }
        return ans;
    }
    
    int F[N], Finv[N], inv[N];
    int C(int n, int m) {
        if(n < 0 || n < m) return 0;
        return 1LL * F[n] * Finv[m] % mod * Finv[n - m] % mod;
    }
    
    int n, m, a, b;
    
    int main() {
        inv[1] = F[0] = Finv[0] = 1;
        for(int i = 2; i < N; i++) inv[i] = 1LL * (mod - mod / i) * inv[mod % i] % mod;
        for(int i = 1; i < N; i++) F[i] = 1LL * F[i - 1] * i % mod;
        for(int i = 1; i < N; i++) Finv[i] = 1LL * Finv[i - 1] * inv[i] % mod;
        scanf("%d%d%d%d", &n, &m, &a, &b);
        int ans = 0;
        for(int i = 2; i <= n; i++) {
            if(i < n) add(ans, 1LL * C(n - 2, i - 2) * F[i - 2] % mod * C(m - 1, i - 2) % mod * power(m, n - i) % mod * i % mod * power(n, n - i - 1) % mod);
            else add(ans, 1LL * F[i - 2] * C(m - 1, i - 2) % mod);
        }
        printf("%d
    ", ans);
        return 0;
    }
    
    /*
    */
  • 相关阅读:
    第四周作业
    第三周作业
    2019学期第八周编程总结
    2019学期第七周编程总结
    2019学期第六周编程总结 .
    2019学期第五周编程总结 .
    2019学期第四周编程总结 .
    2019学期第四周编程总结
    2019学期第三周编程总结
    2019年春季学期第二周作业
  • 原文地址:https://www.cnblogs.com/CJLHY/p/10749474.html
Copyright © 2020-2023  润新知