AT2390 Games on DAG
题意
(1,2) 号点各一个石头,每次沿边移动一个石头,不能动者输。求所有连边子集中先手胜的情况。
思路
发现对于两个石头的 SG 函数是独立的,输者两个石头 SG 函数异或值为 0,那么先手胜的情况就是所有情况减去这种情况。
对于所有 SG 函数为 (v) 的点,它们必须向 SG 函数小于 (v) 的所有点连至少一条边,对大于 (v) 的连边没有约束,并且互相不能连边。
所以我们可以枚举当前图的 SG 函数为 0 的点,这样所有其他点都至少向它们连一条边,而它们之间不连边,它们向其他点连边任意。于是对于剩下点的连通子图,我们又可以将所有点的 SG 函数减 1,使它又可以枚举 SG 函数为 0 的点。
于是我们可以 DP。设 (f_S(1,2in S)) 为对于 (S) 所有连通子图满足 1,2 SG 函数相等的方案数。
转移时枚举 (S) 的子集 (T),使 (1,2in T) 或 (1,2 ot in T)。对于前者情况,(T) 对于 (S) 的补集为 SG 函数为 0 的点,从 (f_T) 转移即可。对于后者情况,1,2 SG 函数为 0,(T) 中的边随便连。
DP 前预处理出所有集合对每个点的连边条数。
代码
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cctype>
#include<cstring>
#include<cmath>
using namespace std;
inline int read(){
int w=0,x=0;char c=getchar();
while(!isdigit(c))w|=c=='-',c=getchar();
while(isdigit(c))x=x*10+(c^48),c=getchar();
return w?-x:x;
}
namespace star
{
const int maxn=15,mod=1e9+7;
int n,m,a[maxn][maxn],f[1<<maxn],c[1<<maxn][maxn],pow[maxn*maxn];
inline void work(){
n=read(),m=read();
pow[0]=1;for(int i=1;i<=m;i++) pow[i]=(pow[i-1]<<1)%mod;
for(int x,y,i=1;i<=m;i++) x=read()-1,y=read()-1,a[x][y]=1;
for(int d=1;d<1<<n;d++){
int j=0;
while(~d>>j&1)++j;
for(int x=0;x<n;x++) c[d][x]=c[d^1<<j][x]+a[x][j];
}
for(int d=0;d<1<<n;d++) if((d&3)==3){
f[d]=1;
for(int t=d&(d-1);t;--t&=d) if((t&1)==(t>>1&1)) if(t&1){
int res=1;
for(int i=0;i<n;i++) if(t>>i&1) res=1ll*res*(pow[c[d^t][i]]-1)%mod;
else if(d>>i&1) res=1ll*res*pow[c[t][i]]%mod;
f[d]=(f[d]+1ll*res*f[t])%mod;
}else{
int res=1;
for(int i=0;i<n;i++) if(t>>i&1) res=1ll*res*(pow[c[d^t][i]]-1)%mod*pow[c[t][i]]%mod;
else if(d>>i&1) res=1ll*res*pow[c[t][i]]%mod;
f[d]=(f[d]+res)%mod;
}
}
printf("%d
",(pow[m]-f[(1<<n)-1]+mod)%mod);
}
}
signed main(){
star::work();
return 0;
}