• 计算机网络面试题


    什么是OSI, 每一层的功能是什么?

    OSI(Open System Interconnect),即开放式系统互联参考模型。

    Keep-Alive 和非 Keep-Alive 区别,对服务器性能有影响吗

    在早期的 HTTP/1.0 中,浏览器每次 发起 HTTP 请求都要与服务器创建一个新的 TCP 连接,服务器完成请求处理后立即断开 TCP 连接,服务器不跟踪每个客户也不记录过去的请求。然而创建和关闭连接的过程需要消耗资源和时间,为了减少资源消耗,缩短响应时间,就需要重用连接。在 HTTP/1.1 版本中默认使用持久连接,在此之前的 HTTP 版本的默认连接都是使用非持久连接,如果想要在旧版本的 HTTP 协议上维持持久连接,则需要指定 connection 的首部字段的值为 Keep-Alive 来告诉对方这个请求响应完成后不要关闭,下一次咱们还用这个请求继续交流,我们用一个示意图来更加生动的表示两者的区别:

    对于非 Keep-Alive 来说,必须为每一个请求的对象建立和维护一个全新的连接。对于每一个这样的连接,客户机和服务器都要分配 TCP 的缓冲区和变量,这给服务器带来的严重的负担,因为一台 Web 服务器可能同时服务于数以百计的客户机请求。在 Keep-Alive 方式下,服务器在响应后保持该 TCP 连接打开,在同一个客户机与服务器之间的后续请求和响应报文可通过相同的连接进行传送。甚至位于同一台服务器的多个 Web 页面在从该服务器发送给同一个客户机时,可以在单个持久 TCP 连接上进行。

    然而,Keep-Alive 并不是没有缺点的,当长时间的保持 TCP 连接时容易导致系统资源被无效占用,若对 Keep-Alive 模式配置不当,将有可能比非 Keep-Alive 模式带来的损失更大。因此,我们需要正确地设置 keep-alive timeout 参数,当 TCP 连接在传送完最后一个 HTTP 响应,该连接会保持 keepalive_timeout 秒,之后就开始关闭这个链接。

    HTTP 方法了解哪些

    方法 描述
    GET 请求指定的页面信息,并返回具体内容,通常只用于读取数据。
    HEAD 类似于 GET 请求,只不过返回的响应中没有具体的内容,用于获取报头。
    POST 向指定资源提交数据进行处理请求(例如提交表单或者上传文件)。数据被包含在请求体中。POST 请求可能会导致新的资源的建立或已有资源的更改。
    PUT 替换指定的资源,没有的话就新增。
    DELETE 请求服务器删除 URL 标识的资源数据。
    CONNECT 将服务器作为代理,让服务器代替用户进行访问。
    OPTIONS 向服务器发送该方法,会返回对指定资源所支持的 HTTP 请求方法。
    TRACE 回显服务器收到的请求数据,即服务器返回自己收到的数据,主要用于测试和诊断。
    PATCH 是对 PUT 方法的补充,用来对已知资源进行局部更新。

    GET 和 POST 的区别

    get 提交的数据会放在 URL 之后,并且请求参数会被完整的保留在浏览器的记录里,由于参数直接暴露在 URL 中,可能会存在安全问题,因此往往用于获取资源信息。而 post 参数放在请求主体中,并且参数不会被保留,相比 get 方法,post 方法更安全,主要用于修改服务器上的资源。
    get 请求只支持 URL 编码,post 请求支持多种编码格式。
    get 只支持 ASCII 字符格式的参数,而 post 方法没有限制。
    get 提交的数据大小有限制(这里所说的限制是针对浏览器而言的),而 post 方法提交的数据没限制
    get 方式需要使用 Request.QueryString 来取得变量的值,而 post 方式通过 Request.Form 来获取。
    get 方法产生一个 TCP 数据包,post 方法产生两个(并不是所有的浏览器中都产生两个)。

    HTTP 与 HTTPs 的工作方式【建立连接的过程】

    HTTP

    HTTP(Hyper Text Transfer Protocol: 超文本传输协议) 是一种简单的请求 - 响应协议,被用于在 Web 浏览器和网站服务器之间传递消息。HTTP 使用 TCP(而不是 UDP)作为它的支撑运输层协议。其默认工作在 TCP 协议 80 端口,HTTP 客户机发起一个与服务器的 TCP 连接,一旦连接建立,浏览器和服务器进程就可以通过套接字接口访问 TCP。客户机从套接字接口发送 HTTP 请求报文和接收 HTTP 响应报文。类似地,服务器也是从套接字接口接收 HTTP 请求报文和发送 HTTP 响应报文。其通信内容以明文的方式发送,不通过任何方式的数据加密。当通信结束时,客户端与服务器关闭连接。

    HTTPS

    HTTPS(Hyper Text Transfer Protocol over Secure Socket Layer)是以安全为目标的 HTTP 协议,在 HTTP 的基础上通过传输加密和身份认证的方式保证了传输过程的安全性。其工作流程如下:

    ① 客户端发起一个 HTTPS 请求,并连接到服务器的 443 端口,发送的信息主要包括自身所支持的算法列表和密钥长度等;

    ② 服务端将自身所支持的所有加密算法与客户端的算法列表进行对比并选择一种支持的加密算法,然后将它和其它密钥组件一同发送给客户端。

    ③ 服务器向客户端发送一个包含数字证书的报文,该数字证书中包含证书的颁发机构、过期时间、服务端的公钥等信息。

    ④ 最后服务端发送一个完成报文通知客户端 SSL 的第一阶段已经协商完成。

    ⑤ SSL 第一次协商完成后,客户端发送一个回应报文,报文中包含一个客户端生成的随机密码串,称为 pre_master_secre,并且该报文是经过证书中的公钥加密过的。

    ⑥ 紧接着客户端会发送一个报文提示服务端在此之后的报文是采用pre_master_secre 加密的。

    ⑦ 客户端向服务端发送一个 finish 报文,这次握手中包含第一次握手至今所有报文的整体校验值,最终协商是否完成取决于服务端能否成功解密。

    ⑧ 服务端同样发送与第 ⑥ 步中相同作用的报文,已让客户端进行确认,最后发送 finish 报文告诉客户端自己能够正确解密报文。

    当服务端和客户端的 finish 报文交换完成之后,SSL 连接就算建立完成了,之后就进行和 HTTP 相同的通信过程,唯一不同的是在 HTTP 通信过程中并不是采用明文传输,而是采用对称加密的方式,其中对称密钥已经在 SSL 的建立过程中协商好了。

    HTTPS 和 HTTP 的区别

    HTTP 协议以明文方式发送内容,数据都是未加密的,安全性较差。HTTPS 数据传输过程是加密的,安全性较好。
    HTTP 和 HTTPS 使用的是完全不同的连接方式,用的端口也不一样,前者是 80 端口,后者是 443 端口。
    HTTPS 协议需要到数字认证机构(Certificate Authority, CA)申请证书,一般需要一定的费用。
    HTTP 页面响应比 HTTPS 快,主要因为 HTTP 使用 3 次握手建立连接,客户端和服务器需要握手 3 次,而 HTTPS 除了 TCP 的 3 次握手,还需要经历一个 SSL 协商过程。

    HTTPS 的加密方式

    HTTPS 采用对称加密和非对称加密相结合的方式,首先使用 SSL/TLS 协议进行加密传输,为了弥补非对称加密的缺点,HTTPS 采用证书来进一步加强非对称加密的安全性,通过非对称加密,客户端和服务端协商好之后进行通信传输的对称密钥,后续的所有信息都通过该对称秘钥进行加密解密,完成整个 HTTPS 的流程。

    HTTP 是不保存状态的协议,如何保存用户状态

    我们知道,假如某个特定的客户机在短时间内两次请求同一个对象,服务器并不会因为刚刚为该用户提供了该对象就不再做出反应,而是重新发送该对象,就像该服务器已经完全忘记不久之前所做过的是一样。因为一个 HTTP 服务器并不保存关于客户机的任何信息,所以我们说 HTTP 是一个无状态协议。

    通常有两种解决方案:

    ① 基于 Session 实现的会话保持

    在客户端第一次向服务器发送 HTTP 请求后,服务器会创建一个 Session 对象并将客户端的身份信息以键值对的形式存储下来,然后分配一个会话标识(SessionId)给客户端,这个会话标识一般保存在客户端 Cookie 中,之后每次该浏览器发送 HTTP 请求都会带上 Cookie 中的 SessionId 到服务器,服务器根据会话标识就可以将之前的状态信息与会话联系起来,从而实现会话保持。

    优点:安全性高,因为状态信息保存在服务器端。

    缺点:由于大型网站往往采用的是分布式服务器,浏览器发送的 HTTP 请求一般要先通过负载均衡器才能到达具体的后台服务器,倘若同一个浏览器两次 HTTP 请求分别落在不同的服务器上时,基于 Session 的方法就不能实现会话保持了。

    【解决方法:采用中间件,例如 Redis,我们通过将 Session 的信息存储在 Redis 中,使得每个服务器都可以访问到之前的状态信息】

    ② 基于 Cookie 实现的会话保持

    当服务器发送响应消息时,在 HTTP 响应头中设置 Set-Cookie 字段,用来存储客户端的状态信息。客户端解析出 HTTP 响应头中的字段信息,并根据其生命周期创建不同的 Cookie,这样一来每次浏览器发送 HTTP 请求的时候都会带上 Cookie 字段,从而实现状态保持。基于 Cookie 的会话保持与基于 Session 实现的会话保持最主要的区别是前者完全将会话状态信息存储在浏览器 Cookie 中。

    优点:服务器不用保存状态信息, 减轻服务器存储压力,同时便于服务端做水平拓展。

    缺点:该方式不够安全,因为状态信息存储在客户端,这意味着不能在会话中保存机密数据。除此之外,浏览器每次发起 HTTP 请求时都需要发送额外的 Cookie 到服务器端,会占用更多带宽。

    拓展:Cookie被禁用了怎么办?

    若遇到 Cookie 被禁用的情况,则可以通过重写 URL 的方式将会话标识放在 URL 的参数里,也可以实现会话保持。

    HTTP 常用状态码

    2xx (3种)

    200 OK:表示从客户端发送给服务器的请求被正常处理并返回;

    204 No Content:表示客户端发送给客户端的请求得到了成功处理,但在返回的响应报文中不含实体的主体部分(没有资源可以返回);

    206 Patial Content:表示客户端进行了范围请求,并且服务器成功执行了这部分的GET请求,响应报文中包含由Content-Range指定范围的实体内容。

    3xx (5种)

    301 Moved Permanently:永久性重定向,表示请求的资源被分配了新的URL,之后应使用更改的URL;

    302 Found:临时性重定向,表示请求的资源被分配了新的URL,希望本次访问使用新的URL;

           301与302的区别:前者是永久移动,后者是临时移动(之后可能还会更改URL)

    303 See Other:表示请求的资源被分配了新的URL,应使用GET方法定向获取请求的资源;

          302与303的区别:后者明确表示客户端应当采用GET方式获取资源

    304 Not Modified:表示客户端发送附带条件(是指采用GET方法的请求报文中包含if-Match、If-Modified-Since、If-None-Match、If-Range、If-Unmodified-Since中任一首部)的请求时,服务器端允许访问资源,但是请求为满足条件的情况下返回改状态码;

    307 Temporary Redirect:临时重定向,与303有着相同的含义,307会遵照浏览器标准不会从POST变成GET;(不同浏览器可能会出现不同的情况);

    4xx (4种)

    400 Bad Request:表示请求报文中存在语法错误;

    401 Unauthorized:未经许可,需要通过HTTP认证;

    403 Forbidden:服务器拒绝该次访问(访问权限出现问题)

    404 Not Found:表示服务器上无法找到请求的资源,除此之外,也可以在服务器拒绝请求但不想给拒绝原因时使用;

    5xx (2种)

    500 Inter Server Error:表示服务器在执行请求时发生了错误,也有可能是web应用存在的bug或某些临时的错误时;

    503 Server Unavailable:表示服务器暂时处于超负载或正在进行停机维护,无法处理请求;

    HTTP/1.1 和 HTTP/1.0 的区别

    主要区别如下:

    缓存处理:在 HTTP/1.0 中主要使用 header 里的 if-modified-Since, Expries 来做缓存判断的标准。而 HTTP/1.1 请求头中添加了更多与缓存相关的字段,从而支持更为灵活的缓存策略,例如 Entity-tag, If-Unmodified-Since, If-Match, If-None-Match 等可供选择的缓存头来控制缓存策略。

    节约带宽: 当客户端请求某个资源时,HTTP/1.0 默认将该资源相关的整个对象传送给请求方,但很多时候可能客户端并不需要对象的所有信息。而在 HTTP/1.1 的请求头中引入了 range 头域,它允许只请求部分资源,其使得开发者可以多线程请求某一资源,从而充分的利用带宽资源,实现高效并发。

    错误通知的管理:HTTP/1.1 在 1.0 的基础上新增了 24 个错误状态响应码,例如 414 表示客户端请求中所包含的 URL 地址太长,以至于服务器无法处理;410 表示所请求的资源已经被永久删除。

    Host 请求头:早期 HTTP/1.0 中认为每台服务器都绑定一个唯一的 IP 地址并提供单一的服务,请求消息中的 URL 并没有传递主机名。而随着虚拟主机的出现,一台物理服务器上可以存在多个虚拟主机,并且它们共享同一个 IP 地址。为了支持虚拟主机,HTTP/1.1 中添加了 host 请求头,请求消息和响应消息中应声明这个字段,若请求消息中缺少该字段时服务端会响应一个 404 错误状态码。

    长连接:HTTP/1.0 默认浏览器和服务器之间保持短暂连接,浏览器的每次请求都需要与服务器建立一个 TCP 连接,服务器完成后立即断开 TCP 连接。HTTP/1.1 默认使用的是持久连接,其支持在同一个 TCP 请求中传送多个 HTTP 请求和响应。此之前的 HTTP 版本的默认连接都是使用非持久连接,如果想要在旧版本的 HTTP 协议上维持持久连接,则需要指定 Connection 的首部字段的值为 Keep-Alive。

    DNS 的作用和原理

    DNS

    DNS(Domain Name System)是域名系统的英文缩写,是一种组织成域层次结构的计算机和网络服务命名系统,用于 TCP/IP 网络。

    DNS 的作用

    通常我们有两种方式识别主机:通过主机名或者 IP 地址。人们喜欢便于记忆的主机名表示,而路由器则喜欢定长的、有着层次结构的 IP 地址。为了满足这些不同的偏好,我们就需要一种能够进行主机名到 IP 地址转换的目录服务,域名系统作为将域名和 IP 地址相互映射的一个分布式数据库,能够使人更方便地访问互联网。

    DNS 域名解析原理

    DNS 采用了分布式的设计方案,其域名空间采用一种树形的层次结构:

    上图展示了 DNS 服务器的部分层次结构,从上到下依次为根域名服务器、顶级域名服务器和权威域名服务器。其实根域名服务器在因特网上有13个,大部分位于北美洲。第二层为顶级域服务器,这些服务器负责顶级域名(如 com、org、net、edu)和所有国家的顶级域名(如uk、fr、ca 和 jp)。在第三层为权威 DNS 服务器,因特网上具有公共可访问主机(例如 Web 服务器和邮件服务器)的每个组织机构必须提供公共可访问的 DNS 记录,这些记录由组织机构的权威 DNS 服务器负责保存,这些记录将这些主机的名称映射为 IP 地址。

    除此之外,还有一类重要的 DNS 服务器,叫做本地 DNS 服务器。本地 DNS 服务器严格来说不在 DNS 服务器的层次结构中,但它对 DNS 层次结构是很重要的。一般来说,每个网络服务提供商(ISP) 都有一台本地 DNS 服务器。当主机与某个 ISP 相连时,该 ISP 提供一台主机的 IP 地址,该主机具有一台或多台其本地 DNS 服务器的 IP 地址。主机的本地 DNS 服务器通常和主机距离较近,当主机发起 DNS 请求时,该请求被发送到本地 DNS 服务器,它起着代理的作用,并将该请求转发到 DNS 服务器层次结构中。

    我们以一个例子来了解 DNS 的工作原理,假设主机 A(IP 地址为 abc.xyz.edu) 想知道主机 B 的 IP 地址 (def.mn.edu),如下图所示,主机 A 首先向它的本地 DNS 服务器发送一个 DNS 查询报文。该查询报文含有被转换的主机名 def.mn.edu。本地 DNS 服务器将该报文转发到根 DNS 服务器,根 DNS 服务器注意到查询的 IP 地址前缀为 edu 后向本地 DNS 服务器返回负责 edu 的顶级域名服务器的 IP 地址列表。该本地 DNS 服务器则再次向这些 顶级域名服务器发送查询报文。该顶级域名服务器注意到 mn.edu 的前缀,并用权威域名服务器的 IP 地址进行响应。通常情况下,顶级域名服务器并不总是知道每台主机的权威 DNS 服务器的 IP 地址,而只知道中间的某个服务器,该中间 DNS 服务器依次能找到用于相应主机的 IP 地址,我们假设中间经历了权威服务器 ① 和 ②,最后找到了负责 def.mn.edu 的权威 DNS 服务器 ③,之后,本地 DNS 服务器直接向该服务器发送查询报文从而获得主机 B 的IP 地址。

    在上图中,IP 地址的查询其实经历了两种查询方式,分别是递归查询和迭代查询。

    拓展:域名解析查询的两种方式

    递归查询:如果主机所询问的本地域名服务器不知道被查询域名的 IP 地址,那么本地域名服务器就以 DNS 客户端的身份,向其他根域名服务器继续发出查询请求报文,即替主机继续查询,而不是让主机自己进行下一步查询,如上图步骤(1)和(10)。
    迭代查询:当根域名服务器收到本地域名服务器发出的迭代查询请求报文时,要么给出所要查询的 IP 地址,要么告诉本地服务器下一步应该找哪个域名服务器进行查询,然后让本地服务器进行后续的查询,如上图步骤(2)~(9)

    socket() 套接字有哪些

    套接字(Socket)是对网络中不同主机上的应用进程之间进行双向通信的端点的抽象,网络进程通信的一端就是一个套接字,不同主机上的进程便是通过套接字发送报文来进行通信。例如 TCP 用主机的 IP 地址 + 端口号作为 TCP 连接的端点,这个端点就叫做套接字。

    套接字主要有以下三种类型:

    流套接字(SOCK_STREAM):流套接字基于 TCP 传输协议,主要用于提供面向连接、可靠的数据传输服务。由于 TCP 协议的特点,使用流套接字进行通信时能够保证数据无差错、无重复传送,并按顺序接收,通信双方不需要在程序中进行相应的处理。
    数据报套接字(SOCK_DGRAM):和流套接字不同,数据报套接字基于 UDP 传输协议,对应于无连接的 UDP 服务应用。该服务并不能保证数据传输的可靠性,也无法保证对端能够顺序接收到数据。此外,通信两端不需建立长时间的连接关系,当 UDP 客户端发送一个数据给服务器后,其可以通过同一个套接字给另一个服务器发送数据。当用 UDP 套接字时,丢包等问题需要在程序中进行处理。
    原始套接字(SOCK_RAW):由于流套接字和数据报套接字只能读取 TCP 和 UDP 协议的数据,当需要传送非传输层数据包(例如 Ping 命令时用的 ICMP 协议数据包)或者遇到操作系统无法处理的数据包时,此时就需要建立原始套接字来发送。

    如果你访问一个网站很慢,怎么排查和解决

    网页打开速度慢的原因有很多,这里列举出一些较常出现的问题:

    ① 首先最直接的方法是查看本地网络是否正常,可以通过网络测速软件例如电脑管家等对电脑进行测速,若网速正常,我们查看网络带宽是否被占用,例如当你正在下载电影时并且没有限速,是会影响你打开网页的速度的,这种情况往往是处理器内存小导致的;

    ② 当网速测试正常时,我们对网站服务器速度进行排查,通过 ping 命令查看链接到服务器的时间和丢包等情况,一个速度好的机房,首先丢包率不能超过 1%,其次 ping 值要小,最后是 ping 值要稳定,如最大和最小差值过大说明路由不稳定。或者我们也可以查看同台服务器上其他网站的打开速度,看是否其他网站打开也慢。

    ③ 如果网页打开的速度时快时慢,甚至有时候打不开,有可能是空间不稳定的原因。当确定是该问题时,就要找你的空间商解决或换空间商了,如果购买空间的话,可选择购买购买双线空间或多线空间;如果是在有的地方打开速度快,有的地方打开速度慢,那应该是网络线路的问题。电信线路用户访问放在联通服务器的网站,联通线路用户访问放在电信服务器上的网站,相对来说打开速度肯定是比较慢。

    ④ 从网站本身找原因。网站的问题主要包括网站程序设计、网页设计结构和网页内容三个部分。

    网站程序设计:当访问网页中有拖慢网站打开速度的代码,会影响网页的打开速度,例如网页中的统计代码,我们最好将其放在网站的末尾。因此我们需要查看网页程序的设计结构是否合理;
    网页设计结构:如果是 table 布局的网站,查看是否嵌套次数太多,或是一个大表格分成多个表格这样的网页布局,此时我们可以采用 div 布局并配合 css 进行优化。
    网页内容:查看网页中是否有许多尺寸大的图片或者尺寸大的 flash 存在,我们可以通过降低图片质量,减小图片尺寸,少用大型 flash 加以解决。此外,有的网页可能过多地引用了其他网站的内容,若某些被引用的网站访问速度慢,或者一些页面已经不存在了,打开的速度也会变慢。一种直接的解决方法是去除不必要的加载项。

    网页解析全过程【用户输入网址到显示对应页面的全过程】

    1、如果域名不是ip,需要走域名解析成ip的逻辑,优先级顺序为: 1 浏览器缓存 > 2 本地hosts > 3 系统缓存 > 4 根域名 > 5 顶级dns服务器(如 com) > 6 二级dns服务器(baidu.com) > 7 三级dns服务器(www.baidu.com),如果客户端指向的dns服务器为非官方的如 8.8.8.8,那在第4步之前可能还有一层cache,当然最后解析的ip有可能是cdn的,如果cdn失效了就直接穿透到源ip,当然这个服务器这一部分可能做了四层负载均衡的设置,所以有可能每次获取的服务器ip都不一祥,也有可能到了服务器ngx层做了七层转发,所以虽然获得的ip一样,但是内部可能转发给了很多内网服务器

    2、通过中间各种路由器的转发,找到了最终服务器,进行tcp三次握手,数据请求,请求分两种一种是uri请求,一种是浏览器咸吃萝卜淡操心的请求网站图标ico的资源请求,然后服务端收到请求后进行请求分析,最终返回http报文,再通过tcp这个连接隧道返回给用户端,用户端收到后再告诉服务端已经收到结果的信号(ack),然后客户端有一套解析规则,如果是html,可能还有额外的外部连接请求,是跟刚才的请求流程是同理的(假设是http1.1),只不过没有了tcp三次握手的过程,最终用户看到了百度的搜索页面。当然如果dns没解析成功,浏览器直接就报错了,不会继续请求接下来的资源

    TCP 流量控制与拥塞控制

    流量控制
    所谓流量控制就是让发送方的发送速率不要太快,让接收方来得及接收。如果接收方来不及接收发送方发送的数据,那么就会有分组丢失。在 TCP 中利用可变长的滑动窗口机制可以很方便的在 TCP 连接上实现对发送方的流量控制。主要的方式是接收方返回的 ACK 中会包含自己的接收窗口大小,以控制发送方此次发送的数据量大小(发送窗口大小)。

    拥塞控制
    在实际的网络通信系统中,除了发送方和接收方外,还有路由器,交换机等复杂的网络传输线路,此时就需要拥塞控制。拥塞控制是作用于网络的,它是防止过多的数据注入到网络中,避免出现网络负载过大的情况。常用的解决方法有:慢开始和拥塞避免、快重传和快恢复。

    拥塞控制和流量控制的区别
    拥塞控制往往是一种全局的,防止过多的数据注入到网络之中,而TCP连接的端点只要不能收到对方的确认信息,猜想在网络中发生了拥塞,但并不知道发生在何处,因此,流量控制往往指点对点通信量的控制,是端到端的问题。

    如果接收方滑动窗口满了,发送方会怎么做

    基于 TCP 流量控制中的滑动窗口协议,我们知道接收方返回给发送方的 ACK 包中会包含自己的接收窗口大小,若接收窗口已满,此时接收方返回给发送方的接收窗口大小为 0,此时发送方会等待接收方发送的窗口大小直到变为非 0 为止,然而,接收方回应的 ACK 包是存在丢失的可能的,为了防止双方一直等待而出现死锁情况,此时就需要坚持计时器来辅助发送方周期性地向接收方查询,以便发现窗口是否变大【坚持计时器参考问题】,当发现窗口大小变为非零时,发送方便继续发送数据。

    TCP 拥塞控制采用的四种算法

    慢开始
    当发送方开始发送数据时,由于一开始不知道网络负荷情况,如果立即将大量的数据字节传输到网络中,那么就有可能引起网络拥塞。一个较好的方法是在一开始发送少量的数据先探测一下网络状况,即由小到大的增大发送窗口(拥塞窗口 cwnd)。慢开始的慢指的是初始时令 cwnd为 1,即一开始发送一个报文段。如果收到确认,则 cwnd = 2,之后每收到一个确认报文,就令 cwnd = cwnd* 2。

    但是,为了防止拥塞窗口增长过大而引起网络拥塞,另外设置了一个慢开始门限 ssthresh。

    ① 当 cwnd < ssthresh 时,使用上述的慢开始算法;

    ② 当 cwnd > ssthresh 时,停止使用慢开始,转而使用拥塞避免算法;

    ③ 当 cwnd == ssthresh 时,两者均可。

    拥塞避免
    拥塞控制是为了让拥塞窗口 cwnd 缓慢地增大,即每经过一个往返时间 RTT (往返时间定义为发送方发送数据到收到确认报文所经历的时间)就把发送方的 cwnd 值加 1,通过让 cwnd 线性增长,防止很快就遇到网络拥塞状态。

    当网络拥塞发生时,让新的慢开始门限值变为发生拥塞时候的值的一半,并将拥塞窗口置为 1 ,然后再次重复两种算法(慢开始和拥塞避免),这时一瞬间会将网络中的数据量大量降低。

    快重传
    快重传算法要求接收方每收到一个失序的报文就立即发送重复确认,而不要等到自己发送数据时才捎带进行确认,假定发送方发送了 Msg 1 ~ Msg 4 这 4 个报文,已知接收方收到了 Msg 1,Msg 3 和 Msg 4 报文,此时因为接收到收到了失序的数据包,按照快重传的约定,接收方应立即向发送方发送 Msg 1 的重复确认。 于是在接收方收到 Msg 4 报文的时候,向发送方发送的仍然是 Msg 1 的重复确认。这样,发送方就收到了 3 次 Msg 1 的重复确认,于是立即重传对方未收到的 Msg 报文。由于发送方尽早重传未被确认的报文段,因此,快重传算法可以提高网络的吞吐量。

    快恢复
    快恢复算法是和快重传算法配合使用的,该算法主要有以下两个要点:

    ① 当发送方连续收到三个重复确认,执行乘法减小,慢开始门限 ssthresh 值减半;

    ② 由于发送方可能认为网络现在没有拥塞,因此与慢开始不同,把 cwnd 值设置为 ssthresh 减半之后的值,然后执行拥塞避免算法,线性增大 cwnd。

    TCP 粘包问题

    为什么会发生TCP粘包和拆包?

    ① 发送方写入的数据大于套接字缓冲区的大小,此时将发生拆包。

    ② 发送方写入的数据小于套接字缓冲区大小,由于 TCP 默认使用 Nagle 算法,只有当收到一个确认后,才将分组发送给对端,当发送方收集了多个较小的分组,就会一起发送给对端,这将会发生粘包。

    ③ 进行 MSS (最大报文长度)大小的 TCP 分段,当 TCP 报文的数据部分大于 MSS 的时候将发生拆包。

    ④ 发送方发送的数据太快,接收方处理数据的速度赶不上发送端的速度,将发生粘包。

    常见解决方法

    ① 在消息的头部添加消息长度字段,服务端获取消息头的时候解析消息长度,然后向后读取相应长度的内容。

    ② 固定消息数据的长度,服务端每次读取既定长度的内容作为一条完整消息,当消息不够长时,空位补上固定字符。但是该方法会浪费网络资源。

    ③ 设置消息边界,也可以理解为分隔符,服务端从数据流中按消息边界分离出消息内容,一般使用换行符。

    什么时候需要处理粘包问题?

    当接收端同时收到多个分组,并且这些分组之间毫无关系时,需要处理粘包;而当多个分组属于同一数据的不同部分时,并不需要处理粘包问题。

    SYN FLOOD 是什么

    SYN Flood 是种典型的 DoS(拒绝服务)攻击,其目的是通过消耗服务器所有可用资源使服务器无法用于处理合法请求。通过重复发送初始连接请求(SYN)数据包,攻击者能够压倒目标服务器上的所有可用端口,导致目标设备根本不响应合法请求。

    为什么服务端易受到 SYN 攻击

    在 TCP 建立连接的过程中,因为服务端不确定自己发给客户端的 SYN-ACK 消息或客户端反馈的 ACK 消息是否会丢在半路,所以会给每个待完成的半开连接状态设一个定时器,如果超过时间还没有收到客户端的 ACK 消息,则重新发送一次 SYN-ACK 消息给客户端,直到重试超过一定次数时才会放弃。

    服务端为了维持半开连接状态,需要分配内核资源维护半开连接。当攻击者伪造海量的虚假 IP 向服务端发送 SYN 包时,就形成了 SYN FLOOD 攻击。攻击者故意不响应 ACK 消息,导致服务端被大量注定不能完成的半开连接占据,直到资源耗尽,停止响应正常的连接请求。

    解决方法:

    直接的方法是提高 TCP 端口容量的同时减少半开连接的资源占用时间,然而该方法只是稍稍提高了防御能力;
    部署能够辨别恶意 IP 的路由器,将伪造 IP 地址的发送方发送的 SYN 消息过滤掉,该方案作用一般不是太大;
    上述两种方法虽然在一定程度上能够提高服务器的防御能力,但是没有从根本上解决服务器资源消耗殆尽的问题,而以下几种方法的出发点都是在发送方发送确认回复后才开始分配传输资源,从而避免服务器资源消耗殆尽。

    SYN Cache:该方法首先构造一个全局 Hash Table,用来缓存系统当前所有的半开连接信息。在 Hash Table 中的每个桶的容量大小是有限制的,当桶满时,会主动丢掉早来的信息。当服务端收到一个 SYN 消息后,会通过一个映射函数生成一个相应的 Key 值,使得当前半连接信息存入相应的桶中。当收到客户端正确的确认报文后,服务端才开始分配传输资源块,并将相应的半开连接信息从表中删除。和服务器传输资源相比,维护表的开销要小得多。

    SYN Cookies:该方案原理和 HTTP Cookies 技术类似,服务端通过特定的算法将半开连接信息编码成序列号或者时间戳,用作服务端给客户端的消息编号,随 SYN-ACK 消息一同返回给连接发起方,这样在连接建立完成前服务端不保存任何信息,直到发送方发送 ACK 确认报文并且服务端成功验证编码信息后,服务端才开始分配传输资源。若请求方是攻击者,则不会向服务端会 ACK 消息,由于未成功建立连接,因此服务端并没有花费任何额外的开销。

    然而该方案也存在一些缺点,由于服务端并不保存半开连接状态,因此也就丧失了超时重传的能力,这在一定程度上降低了正常用户的连接成功率。此外,客户端发送给服务端的确认报文存在传输丢失的可能,当 ACK 确认报文丢失时,服务端和客户端会对连接的成功与否产生歧义,此时就需要上层应用采取相应的策略进行处理了。

    SYN Proxy:在客户端和服务器之间部署一个代理服务器,类似于防火墙的作用。通过代理服务器与客户端进行建立连接的过程,之后代理服务器充当客户端将成功建立连接的客户端信息发送给服务器。这种方法基本不消耗服务器的资源,但是建立连接的时间变长了(总共需要 6 次握手)。

    IP 协议的定义和作用

    IP 协议(Internet Protocol)又称互联网协议,是支持网间互联的数据包协议。该协议工作在网络层,主要目的就是为了提高网络的可扩展性,和传输层 TCP 相比,IP 协议提供一种无连接/不可靠、尽力而为的数据包传输服务,其与TCP协议(传输控制协议)一起构成了TCP/IP 协议族的核心。IP 协议主要有以下几个作用:

    寻址和路由:在IP 数据包中会携带源 IP 地址和目的 IP 地址来标识该数据包的源主机和目的主机。IP 数据报在传输过程中,每个中间节点(IP 网关、路由器)只根据网络地址进行转发,如果中间节点是路由器,则路由器会根据路由表选择合适的路径。IP 协议根据路由选择协议提供的路由信息对 IP 数据报进行转发,直至抵达目的主机。
    分段与重组:IP 数据包在传输过程中可能会经过不同的网络,在不同的网络中数据包的最大长度限制是不同的,IP 协议通过给每个 IP 数据包分配一个标识符以及分段与组装的相关信息,使得数据包在不同的网络中能够传输,被分段后的 IP 数据报可以独立地在网络中进行转发,在到达目的主机后由目的主机完成重组工作,恢复出原来的 IP 数据包。

    IPV4 地址不够如何解决

    DHCP:动态主机配置协议。动态分配 IP 地址,只给接入网络的设备分配IP地址,因此同一个 MAC 地址的设备,每次接入互联网时,得到的IP地址不一定是相同的,该协议使得空闲的 IP 地址可以得到充分利用。
    CIDR:无类别域间路由。CIDR 消除了传统的 A 类、B 类、C 类地址以及划分子网的概念,因而更加有效的分配 IPv4 的地址空间,但无法从根本上解决地址耗尽问题。
    NAT:网络地址转换协议。我们知道属于不同局域网的主机可以使用相同的 IP 地址,从而一定程度上缓解了 IP 资源枯竭的问题。然而主机在局域网中使用的 IP 地址是不能在公网中使用的,当局域网主机想要与公网进行通信时, NAT 方法可以将该主机 IP 地址转换成全球 IP 地址。该协议能够有效解决 IP 地址不足的问题。
    IPv6 :作为接替 IPv4 的下一代互联网协议,其可以实现 2 的 128 次方个地址,而这个数量级,即使是给地球上每一颗沙子都分配一个IP地址,该协议能够从根本上解决 IPv4 地址不够用的问题。

    路由器的分组转发流程

    ① 从 IP 数据包中提取出目的主机的 IP 地址,找到其所在的网络;

    ② 判断目的 IP 地址所在的网络是否与本路由器直接相连,如果是,则不需要经过其它路由器直接交付,否则执行 ③;

    ③ 检查路由表中是否有目的 IP 地址的特定主机路由。如果有,则按照路由表传送到下一跳路由器中,否则执行 ④;

    ④ 逐条检查路由表,使用每一行的子网掩码与目的IP匹配。若找到匹配路由,则按照路由表转发到下一跳路由器中,否则执行步骤 ⑤;

    ⑤ 若路由表中设置有默认路由,则按照默认路由转发到默认路由器中,否则执行步骤 ⑥;

    ⑥ 无法找到合适路由,向源主机报错。

  • 相关阅读:
    Android UiAutomator 自动化测试环境搭建---新手1
    python -- 计算数学题--用程序解决问题1
    linux(ubuntu) 遇到的问题 --1
    android--email发送邮件,文本还有附件形式的邮件
    fiddler---使用方法1--抓取手机app包
    appium 学习各种小功能总结--功能有《滑动图片、保存截图、验证元素是否存在、》---新手总结(大牛勿喷,新手互相交流)
    java 显示视频时间--玩的
    appium获取app应用的package和 activity。---新手总结(大牛勿喷,新手互相交流)
    python --appium搭建环境过程 ---新手总结(大牛勿喷,新手互相交流)
    centos6下yslow部署
  • 原文地址:https://www.cnblogs.com/Bowu/p/15983392.html
Copyright © 2020-2023  润新知