2909: Number of Containers
Total Submit: 130 Accepted:64
Description
For two integers m and k, k is said to be a container of m if k is divisible by m. Given 2 positive integers n and m (m < n), the function f(n, m) is defined to be the number of containers of m which are also no greater than n. For example, f(5, 1)=4, f(8, 2)=3, f(7, 3)=1, f(5, 4)=0...
Let us define another function F(n) by the following equation:
Input
There are multiple test cases. The first line of input contains an integer T(T<=200) indicating the number of test cases. Then T test cases follow.
Each test case contains a positive integer n (0 < n <= 2000000000) in a single line.
Output
For each test case, output the result F(n) in a single line.
Sample Input
2
1
4
Sample Output
0
4
这个题目本质是求1-n的n/i,但是n很大,所以你很快就会发现某段的值是一定的
所以就可以把他搞出sqrt(n)段进行分步求解
#include<stdio.h> #include<bits/stdc++.h> using namespace std; #define lson l,(l+r)/2,rt<<1 #define rson (l+r)/2+1,r,rt<<1|1 #define dbg(x) cout<<#x<<" = "<< (x)<< endl #define pb push_back #define fi first #define se second #define ll long long #define sz(x) (int)(x).size() #define pll pair<long long,long long> #define pii pair<int,int> #define pq priority_queue const int N=1e5+5,MD=1e9+7,INF=0x3f3f3f3f; const ll LL_INF=0x3f3f3f3f3f3f3f3f; const double eps=1e-9,e=exp(1),PI=acos(-1.); int a[N]; int main() { ios::sync_with_stdio(false),cin.tie(0),cout.tie(0); int T; cin>>T; while(T--) { int n; cin>>n; ll sum=-n,r=sqrt(n+0.5); for(int i=1;i<=r;i++)sum+=n/i; for(int i=1;i<=r;i++)sum+=i*1LL*(n/i-n/(i+1)); if(r==n/r)sum-=r; cout<<sum<<" "; } return 0; }
- 1000ms
- 512000K
A square-free integer is an integer which is indivisible by any square number except 11. For example, 6 = 2 cdot 36=2⋅3 is square-free, but 12 = 2^2 cdot 312=22⋅3 is not, because 2^222 is a square number. Some integers could be decomposed into product of two square-free integers, there may be more than one decomposition ways. For example, 6 = 1cdot 6=6 cdot 1=2cdot 3=3cdot 2, n=ab6=1⋅6=6⋅1=2⋅3=3⋅2,n=aband n=ban=ba are considered different if a ot = ba̸=b. f(n)f(n) is the number of decomposition ways that n=abn=ab such that aa and bb are square-free integers. The problem is calculating sum_{i = 1}^nf(i)∑i=1nf(i).
Input
The first line contains an integer T(Tle 20)T(T≤20), denoting the number of test cases.
For each test case, there first line has a integer n(n le 2cdot 10^7)n(n≤2⋅107).
Output
For each test case, print the answer sum_{i = 1}^n f(i)∑i=1nf(i).
Hint
sum_{i = 1}^8 f(i)=f(1)+ cdots +f(8)∑i=18f(i)=f(1)+⋯+f(8)
=1+2+2+1+2+4+2+0=14=1+2+2+1+2+4+2+0=14.
样例输入
2 5 8
样例输出
8 14
题目来源
这个可以整除分块,首先搞除整除分块最常用的公式
for(int l=1,r;l<=n;l=r+1) { r=n/(n/l); ans+=(r-l+1)*(n/l); }
但是这个题目中,你需要考虑其他情况
这个做法是sqrt(n)的
#include<stdio.h> #include<bits/stdc++.h> using namespace std; #define lson l,(l+r)/2,rt<<1 #define rson (l+r)/2+1,r,rt<<1|1 #define dbg(x) cout<<#x<<" = "<< (x)<< endl #define pb push_back #define fi first #define se second #define ll long long #define sz(x) (int)(x).size() #define pll pair<long long,long long> #define pii pair<int,int> #define pq priority_queue const int N=2e7+5,MD=1e9+7,INF=0x3f3f3f3f; const ll LL_INF=0x3f3f3f3f3f3f3f3f; const double eps=1e-9,e=exp(1),PI=acos(-1.); int a[N]; int main() { ios::sync_with_stdio(false),cin.tie(0),cout.tie(0); for(int i=2; i*i<N; i++) for(int j=i*i; j<N; j+=i*i)a[j]=1; for(int i=1; i<N; i++)a[i]+=a[i-1]; int T; cin>>T; while(T--) { int n; cin>>n; ll ans=0; int l=1,r; while(l<=n) { r=n/(n/l)+1; ans+=1LL*(r-l)*(n/l)-2LL*(a[r-1]-a[l-1])*(n/l)+1LL*(a[r-1]-a[l-1])*a[n/l]; l=r; } cout<<ans<<" "; } return 0; }
C - Fear Factoring
Fear Factoring The Slivians are afraid of factoring; it’s just, well, difficult. Really, they don’t even care about the factors themselves, just how much they sum to. We can define F(n) as the sum of all of the factors of n; so F(6) = 12 and F(12) = 28. Your task is, given two integers a and b with a ≤ b, to calculate S = X a≤n≤b F(n). Input The input consists of a single line containing space-separated integers a and b (1 ≤ a ≤ b ≤ 1012; b − a ≤ 106 ). Output Print S on a single line. Sample Input and Output 101 101 102 28 28 56 1 10 87 987654456799 987654456799 987654456800 2017 Pacific Northwest Region Programming Contest 9 963761198400 963761198400 5531765944320 5260013877 5260489265 4113430571304040
秦皇岛前的最后一场训练,攒人品
枚举约数
显然对于一个约数 dd , 在 1−n1−n 中出现过 ⌊nd⌋⌊nd⌋ 次, 所以这一约数贡献的答案为 ⌊nd⌋∗d⌊nd⌋∗d
所以 1−n1−n 总因数和为
所以可以直接数论分块啊
#include<bits/stdc++.h> using namespace std; typedef unsigned long long ll; ll la(ll n) { if(n==0)return 0; ll ans=0,l=1,r=0; for(;l<=n;) { r=n/(n/l); ans+=(l+r)*(r-l+1)/2*(n/l); l=r+1; } return ans; } int main() { ll a,b; while(~scanf("%llu%llu",&a,&b)) printf("%llu ", la(b)-la(a-1)); return 0; }