• TOJ 5020: Palindromic Paths


    5020: Palindromic Paths 分享至QQ空间

    Time Limit(Common/Java):10000MS/30000MS     Memory Limit:65536KByte
    Total Submit: 8            Accepted:4

    Description

     

    Given an N×N grid of fields (1≤N≤500), each labeled with a letter in the alphabet. For example:

    ABCD

    BXZX
    CDXB
    WCBA

    Each day, Susa walks from the upper-left field to the lower-right field, each step taking her either one field to the right or one field downward. Susa keeps track of the string that she generates during this process, built from the letters she walks across. She gets very disoriented, however, if this string is a palindrome (reading the same forward as backward), since she gets confused about which direction she had walked.

    Please help Susa determine the number of distinct routes she can take that correspond to palindromes. Different ways of obtaining the same palindrome count multiple times. Please print your answer modulo 1,000,000,007.

     

    Input

    The first line of input contains N, and the remaining N lines contain the N rows of the grid of fields. Each row contains N characters that are in the range A...Z.

    Output

     

    Please output the number of distinct palindromic routes Susa can take, modulo 1,000,000,007.

    Sample Input

    4
    ABCD
    BXZX
    CDXB
    WCBA

    Sample Output

     12

    Hint

    Susa can make the following palindromes

    1 x "ABCDCBA"

    1 x "ABCWCBA"

    6 x "ABXZXBA"

    4 x "ABXDXBA"

    Source

    USACO 2015 US Open

    一道不错的枚举+滚动数组,美滋滋,f[i][j][k]表示第一个点在第i行,第2个点在第j行都走了k步的方案数

     

    #include <stdio.h>
    #include <algorithm>
    using namespace std;
    typedef __int64 ll;
    const int mod=1e9+7;
    char s[502][502];
    ll dp[502][502][2];
    int main() {
        int n;
        scanf("%d",&n);
        for(int i=1; i<=n; i++)
            scanf("%s",s[i]+1);
        int now=1,pre=0;
        if(s[1][1]!=s[n][n]) {
            return 0,printf("0
    ");
        }
        dp[1][n][pre]=1;
        for(int k=2; k<=n; k++) {
            for(int i=1; i<=k; i++)
                for(int j=n; j>=i&&j>=n-k+1; j--) {
                    if(s[i][k-i+1]==s[j][n-k+n-j+1])
                        dp[i][j][now]=(dp[i-1][j][pre]+dp[i][j][pre]+dp[i][j+1][pre]+dp[i-1][j+1][pre])%mod;
                    else dp[i][j][now]=0;
                }
            swap(now,pre);
        }
        ll ans=0;
        for(int i=1; i<=n; i++) {
            ans=(ans+dp[i][i][pre])%mod;
        }
        printf("%lld",ans);
        return 0;
    }

     

     

  • 相关阅读:
    【字符串】C语言_字符串常量详解
    2138=数据结构实验之图论三:判断可达性
    3363=数据结构实验之图论七:驴友计划
    1916=字符串扩展(JAVA)
    2140=数据结构实验之图论十:判断给定图是否存在合法拓扑序列
    3364=数据结构实验之图论八:欧拉回路
    2138=数据结构实验之图论三:判断可达性
    2271=Eddy的难题(JAVA)
    2246=时间日期格式转换(JAVA)
    2804=数据结构实验之二叉树八:(中序后序)求二叉树的深度
  • 原文地址:https://www.cnblogs.com/BobHuang/p/7277296.html
Copyright © 2020-2023  润新知