• 凸函数及其性质


    1. 定义

    1.1 定义一

    • 如果对任意(x_1)(x_2)总有(f[alpha x_1 + (1 - alpha )x_2] ge alpha f(x_1) + (1 - alpha )f(x_2)),其中(displaystyle 0 le alpha le 1),则称(f(x))上凸函数
    • 如果对任意(x_1)(x_2)(x_1 e x_2),总有(f[alpha x_1 + (1 - alpha )x_2] gt alpha f(x_1) + (1 - alpha )f(x_2)),其中(0 ltalpha lt 1),则称(f(x))严格上凸函数

    1.2 定义二

    • 如果对任意(x_1)(x_2)总有(f[alpha x_1 + (1 - alpha )x_2]le alpha f(x_1) + (1 - alpha )f(x_2)),其中(displaystyle 0 le alpha le 1),则称(f(x))下凸函数
    • 如果对任意(x_1)(x_2)(x_1 e x_2),总有(f[alpha x_1 + (1 - alpha )x_2] lt alpha f(x_1) + (1 - alpha )f(x_2)),其中(0 ltalpha lt 1),则称(f(x))严格下凸函数

    2. 琴生(Jenson)不等式

    • 对于上凸函数,(f(E[X]) ge E[f(x)])(displaystyle sum_{k=1}^q lambda_k f(x_k)le f(sum_{k=1}^q lambda_k x_k)),其中(lambda_1,lambda_2,cdots,lambda_q)为正实数(或非负实数,后者去除无影响的(lambda_i = 0)的项即为前者,故二者等价)且(displaystyle sum_{k=1}^q lambda_k = 1);对于严格上凸函数,上述等号成立当且仅当(x_1 = x_2 = cdots = x_q)
    • 对于下凸函数,(f(E[X])le E[f(x)])(displaystyle sum_{k=1}^q lambda_k f(x_k) ge f(sum_{k=1}^q lambda_k x_k)),其中(lambda_1,lambda_2,cdots,lambda_q)为正实数(或非负实数,后者去除无影响的(lambda_i = 0)的项即为前者,故二者等价)且(displaystyle sum_{k=1}^q lambda_k = 1);对于严格下凸函数,上述等号成立当且仅当(x_1 = x_2 = cdots = x_q)

    (downarrow)证明过程如下(downarrow)

    2.1 上凸函数

    证明:因为(lambda_i)均为正实数,故有
      (displaystyle f( sum_{k=1}^q lambda_k x_k) = f(lambda_1 x_1 + sum_{k=2}^q lambda_k {sum_{k=2}^q lambda_k x_k over sum_{k=2}^q lambda_k}) ge lambda_1 f(x_1) + sum_{k=2}^q lambda_k cdot f({sum_{k=2}^q lambda_k x_k over sum_{k=2}^q lambda_k}))
            (displaystyle = lambda_1 f(x_1) + sum_{k=2}^q lambda_k cdot f({lambda_2 over sum_{k=2}^q lambda_k} x_2 + {sum_{k=3}^q lambda_k over sum_{k=2}^q lambda_k} cdot {sum_{k=3}^q lambda_k x_k over sum_{k=3}^q lambda_k}))
            (displaystyle ge lambda_1 f(x_1) + lambda_2 f(x_2) + sum_{k=3}^q lambda_k cdot f({sum_{k=3}^q lambda_k x_k over sum_{k=3}^q lambda_k}))
            (displaystyle ge cdots ge sum_{k=1}^q lambda_k f(x_k))

    2.2 严格上凸函数

    证明由定义可知,对于严格上凸函数,(f[alpha x_1 + (1 - alpha )x_2] ge alpha f(x_1) + (1 - alpha )f(x_2))等号成立时当且仅当(x_1 = x_2) 。而根据上文对于上凸函数对于(displaystyle sum_{k=1}^q lambda_k f(x_k)le f(sum_{k=1}^q lambda_k x_k))不等式推导过程可知,若上凸函数为严格上凸函数,则第一个(ge)处等号成立当且仅当:(x_1 = {sum_{k=2}^q lambda_k x_k over sum_{k=2}^q lambda_k});第二个(ge)处等号成立当且仅当:(x_2 = {sum_{k=3}^q lambda_k x_k over sum_{k=3}^q lambda_k})(cdots);第(q-1)(ge)处等号成立当且仅当:(x_{q-1} = {sum_{k=q}^q lambda_k x_k over sum_{k=q}^q lambda_q} = x_q)。所有等号都成立则以上条件都需满足,对以上条件反向推导可得:(x_q = x_{q-1})(x_{q-2} = {sum_{k=q-1}^q lambda_k x_k over sum_{k=q-1}^q lambda_k} = {lambda_{q-1} x_{q-1} + lambda_{q} x_q over lambda_{q-1} + lambda_{q}} = x_{q-1})(cdots)(x_1 = x_2)

    (displaystyle sum_{k=1}^q lambda_k f(x_k)le f(sum_{k=1}^q lambda_k x_k))等号成立当且仅当(x_1 = x_2 = cdots = x_q)

    2.3 下凸函数

    证明:因为(lambda_i)均为正实数,故有
      (displaystyle f( sum_{k=1}^q lambda_k x_k) = f(lambda_1 x_1 + sum_{k=2}^q lambda_k {sum_{k=2}^q lambda_k x_k over sum_{k=2}^q lambda_k}) le lambda_1 f(x_1) + sum_{k=2}^q lambda_k cdot f({sum_{k=2}^q lambda_k x_k over sum_{k=2}^q lambda_k}))
            (displaystyle = lambda_1 f(x_1) + sum_{k=2}^q lambda_k cdot f({lambda_2 over sum_{k=2}^q lambda_k} x_2 + {sum_{k=3}^q lambda_k over sum_{k=2}^q lambda_k} cdot {sum_{k=3}^q lambda_k x_k over sum_{k=3}^q lambda_k}))
            (displaystyle le lambda_1 f(x_1) + lambda_2 f(x_2) + sum_{k=3}^q lambda_k cdot f({sum_{k=3}^q lambda_k x_k over sum_{k=3}^q lambda_k}))
            (displaystyle le cdots le sum_{k=1}^q lambda_k f(x_k))

    2.4 严格下凸函数

    证明由定义可知,对于严格下凸函数,(f[alpha x_1 + (1 - alpha )x_2] le alpha f(x_1) + (1 - alpha )f(x_2))等号成立时当且仅当(x_1 = x_2) 。而根据上文对于下凸函数对于(displaystyle sum_{k=1}^q lambda_k f(x_k)le f(sum_{k=1}^q lambda_k x_k))不等式推导过程可知,若下凸函数为严格下凸函数,则第一个(le)处等号成立当且仅当:(x_1 = {sum_{k=2}^q lambda_k x_k over sum_{k=2}^q lambda_k});第二个(le)处等号成立当且仅当:(x_2 = {sum_{k=3}^q lambda_k x_k over sum_{k=3}^q lambda_k})(cdots);第(q-1)(le)处等号成立当且仅当:(x_{q-1} = {sum_{k=q}^q lambda_k x_k over sum_{k=q}^q lambda_q} = x_q)。所有等号都成立则以上条件都需满足,对以上条件反向推导可得:(x_q = x_{q-1})(x_{q-2} = {sum_{k=q-1}^q lambda_k x_k over sum_{k=q-1}^q lambda_k} = {lambda_{q-1} x_{q-1} + lambda_{q} x_q over lambda_{q-1} + lambda_{q}} = x_{q-1})(cdots)(x_1 = x_2)

    (displaystyle sum_{k=1}^q lambda_k f(x_k) ge f(sum_{k=1}^q lambda_k x_k))等号成立当且仅当(x_1 = x_2 = cdots = x_q)

  • 相关阅读:
    VMware-Fault-Tolerant Virtual Machine--论文翻译
    Mysql InnoDB存储引擎的锁相关
    深入理解JVM——读书笔记(虚拟机字节码执行引擎)
    Manacher算法
    The Google File System(论文阅读笔记)
    Java并发编程实践——读书笔记(一)
    MapReduce: Simplified Data Processing on Large Clusters
    二叉搜索树倒序O(nlogn)建树
    Day17
    Day16
  • 原文地址:https://www.cnblogs.com/BlueHeart0621/p/12931346.html
Copyright © 2020-2023  润新知