• PAT 1146 Topological Order[难]


    1146 Topological Order (25 分)

    This is a problem given in the Graduate Entrance Exam in 2018: Which of the following is NOT a topological order obtained from the given directed graph? Now you are supposed to write a program to test each of the options.

    gre.jpg

    Input Specification:

    Each input file contains one test case. For each case, the first line gives two positive integers N (≤ 1,000), the number of vertices in the graph, and M (≤ 10,000), the number of directed edges. Then M lines follow, each gives the start and the end vertices of an edge. The vertices are numbered from 1 to N. After the graph, there is another positive integer K (≤ 100). Then K lines of query follow, each gives a permutation of all the vertices. All the numbers in a line are separated by a space.

    Output Specification:

    Print in a line all the indices of queries which correspond to "NOT a topological order". The indices start from zero. All the numbers are separated by a space, and there must no extra space at the beginning or the end of the line. It is graranteed that there is at least one answer.

    Sample Input:

    6 8
    1 2
    1 3
    5 2
    5 4
    2 3
    2 6
    3 4
    6 4
    5
    1 5 2 3 6 4
    5 1 2 6 3 4
    5 1 2 3 6 4
    5 2 1 6 3 4
    1 2 3 4 5 6
    

    Sample Output:

    3 4

     题目大意:给出一个有向图,并且给定K个序列,判断这个序列是否是拓扑序列。

    //我一看见我想的就是,得用邻接表存储图,然后对每一个输入的序列,都进行判断,基本上复杂度是非常高的,就是对每一个序列中的数,判断其之前出现的每一个数是否是它的next,这样来判断,然后写的不对。

    #include <iostream>
    #include<vector>
    #include<map>
    #include<algorithm>
    using namespace std;
    
    vector<vector<int>> graph;
    int main(){
        int n,m;
        cin>>n>>m;
        graph.resize(n+1);
        int f,t;
        for(int i=0;i<m;i++){
            cin>>f>>t;
            graph[f].push_back(t);//因为是单向图
        }
        int u;
        cin>>u;
        vector<int> vt(n);
        vector<int> ans;
        for(int i=0;i<u;i++){//复杂度是O(n^2),稍微有点高啊。
            for(int j=0;j<n;j++)
                cin>>vt[j];
            //检查在其之前出现的是否是在这个图的next里。
            bool flag=true;
            for(int j=1;j<n;j++){
                for(int k=0;k<j;k++){//在这还得遍历vt[j]
                    for(int v=0;v<graph[j].size();v++){
                        if(vt[k]==graph[j][v]){
                            cout<<vt[k]<<" "<<graph[j][v]<<"
    ";
                            ans.push_back(i);
                            flag=false;
                            break;
                        }
                    }
                if(!flag)break;
                }
                if(!flag)break;
            }
        }
        for(int i=0;i<ans.size();i++){
            cout<<ans[i];
            if(i!=ans.size()-1)cout<<' ';
        }
    
        return 0;
    }
    View Code

    结果:

    //真的很奔溃啊,怎么每个都是不对的,那个2 2 到底是什么意思?我明天再看看吧。

    //柳神的代码:

    //根据入度出度来判断,非常可以了。。

    学习了,要多复习。

  • 相关阅读:
    k8s 部署springcloud
    Actuator 端点监控
    [转]再识Cortex-M3之堆栈
    ARM中R0-R15寄存器的作用
    Keil中 Program Size: Code RO-data RW-data ZI-data
    【浅说】堆(heap)和栈(stack)区别
    I2C的小结
    一个判断I2C总线通信异常原因的方法
    Linux输入子系统详解
    【转】完整精确导入Kernel与Uboot参与编译了的代码到Source Insight,Understand, SlickEdit
  • 原文地址:https://www.cnblogs.com/BlueBlueSea/p/9873192.html
Copyright © 2020-2023  润新知