• PAT 1147 Heaps[难]


    1147 Heaps(30 分)

    In computer science, a heap is a specialized tree-based data structure that satisfies the heap property: if P is a parent node of C, then the key (the value) of P is either greater than or equal to (in a max heap) or less than or equal to (in a min heap) the key of C. A common implementation of a heap is the binary heap, in which the tree is a complete binary tree. (Quoted from Wikipedia at https://en.wikipedia.org/wiki/Heap_(data_structure))

    Your job is to tell if a given complete binary tree is a heap.

    Input Specification:

    Each input file contains one test case. For each case, the first line gives two positive integers: M (≤ 100), the number of trees to be tested; and N (1 < N ≤ 1,000), the number of keys in each tree, respectively. Then M lines follow, each contains N distinct integer keys (all in the range of int), which gives the level order traversal sequence of a complete binary tree.

    Output Specification:

    For each given tree, print in a line Max Heap if it is a max heap, or Min Heap for a min heap, or Not Heap if it is not a heap at all. Then in the next line print the tree's postorder traversal sequence. All the numbers are separated by a space, and there must no extra space at the beginning or the end of the line.

    Sample Input:

    3 8
    98 72 86 60 65 12 23 50
    8 38 25 58 52 82 70 60
    10 28 15 12 34 9 8 56
    

    Sample Output:

    Max Heap
    50 60 65 72 12 23 86 98
    Min Heap
    60 58 52 38 82 70 25 8
    Not Heap
    56 12 34 28 9 8 15 10

     题目大意:输入几组完全二叉树的层次遍历序列,判断它是最大堆、最小堆、还是啥都不是。树中节点数N<=1000

     //如果只判断是不是堆,完全不用建树,因为是完全二叉树可以利用数组下标,左子树下标为2*i,右子树是2*i+1。然而最终都要给出来后根遍历,所以建树再后根遍历还是比较方便的。

    //怎么根据层次遍历建树呢?不会也。。。

    #include <iostream>
    #include <string>
    #include <vector>
    #include<cstdio>
    using namespace std;
    int main() {
        int k,n;
        cin>>k>>n;
        while(k--){
            vector<int> tree(n+1);
            for(int i=1;i<=n;i++){
                cin>>tree[i];
            }
            bool flag=true;
            for(int i=1;2*i<=n||2*i+1<=n;i++){//判断是否是最大堆
                if(tree[i]>=tree[2*i]&&tree[i]>=tree[2*i+1])continue;
                else{
                    flag=false;break;
                }
            }
            if(flag)cout<<"Max Heap
    ";
            else{
                flag=true;
                for(int i=1;2*i<=n||2*i+1<=n;i++){
                if(tree[i]<=tree[2*i]&&tree[i]<=tree[2*i+1])continue;
                else{
                    flag=false;break;
                }
                }
                if(flag)cout<<"Min Heap
    ";
                else cout<<"Not Heap
    ";
            }
        }
    
        return 0;
    }
    View Code

    写出的这个代码在运行样例的时候,出现了以下问题:

    第二个最小堆,判断不是最小堆,突然发现是因为代码里,寻址了不存在的单元!这样的话那个单元是一个很大的负值,那么最大堆当然是可以判断了,但是最小堆就出现了问题!

    //那如果那样去判断的话,可就是很复杂了。。。放弃。

    //看到大佬28行的代码,内心是震惊的。。

     代码来自:https://www.liuchuo.net/archives/4667

    #include <iostream>
    #include <vector>
    using namespace std;
    int m, n;
    vector<int> v;
    void postOrder(int index) {//原来可以根据下标遍历完全二叉树啊!
        if (index >= n) return;
        postOrder(index * 2 + 1);
        postOrder(index * 2 + 2);//就算index * 2 + 2那么就会return,正好是递归出口。
        printf("%d%s", v[index], index == 0 ? "
    " : " ");
        //如果遍历到最终根节点即index=0,那么
    }
    int main() {
        scanf("%d%d", &m, &n);
        v.resize(n);//其实完全可以只用一个向量,因为新输入的会将原来的覆盖。
        for (int i = 0; i < m; i++) {
            for (int j = 0; j < n; j++) scanf("%d", &v[j]);
            int flag = v[0] > v[1] ? 1 : -1;//根据这个判断可能的情况。
            for (int j = 0; j <= (n-1) / 2; j++) {//原来可以这样限制j的范围。
                int left = j * 2 + 1, right = j * 2 + 2;
                //因为只有右边的会超,所以只控制右边即可。
                //厉害了,反过来进行判断。
                if (flag == 1 && (v[j] < v[left] || (right < n && v[j] < v[right]))) flag = 0;
                if (flag == -1 && (v[j] > v[left] || (right < n && v[j] > v[right]))) flag = 0;
            }
            if (flag == 0) printf("Not Heap
    ");
            else printf("%s Heap
    ", flag == 1 ? "Max" : "Min");//这一句厉害厉害。
            postOrder(0);
        }
        return 0;
    }

    //真是太厉害了,再判断是否是堆以及后根遍历的时候,我还需要时间消化

  • 相关阅读:
    app应用的下载
    fiddler https 抓包
    Scrapy 框架基础入门
    MongoDB在Windows下安装配置
    Wget 的基础使用
    MongoDB C#驱动中Query几个方法
    Redis数据库2
    Linux下软件安装的四种方式
    Linux命令-4类
    Redis数据库1
  • 原文地址:https://www.cnblogs.com/BlueBlueSea/p/9580461.html
Copyright © 2020-2023  润新知