• KL散度 Learner


    介绍

      相对熵(relative entropy),又被称为Kullback-Leibler散度(Kullback-Leibler divergence)或信息散度(information divergence),是两个概率分布(probability distribution)间差异的非对称性度量。在信息理论中,相对熵等价于两个概率分布的信息熵(Shannon entropy)的差值。

      相对熵是一些优化算法,例如最大期望算法(Expectation-Maximization algorithm, EM)的损失函数 。此时参与计算的一个概率分布为真实分布,另一个为理论(拟合)分布,相对熵表示使用理论分布拟合真实分布时产生的信息损耗

    理论

    定义

      设 $P(x)$, $Q(x)$ 是随机变量  $X$  上的两个概率分布,则在离散和连续随机变量的情形下,相对熵的定义分别为:

        $\mathrm{KL}(P \| Q) =\sum P(x) \log \frac{P(x)}{Q(x)}$
        $\mathrm{KL}(P \| Q) =\int P(x) \log \frac{P(x)}{Q(x)} d x$

      典型情况下, $P$表示数据的真实分布, $Q$表示数据的理论分布,模型分布,或$P$的近似分布。

    计算实例

      这里给出一个对相对熵进行计算的具体例子。假如一个字符发射器,随机发出 $0$ 和 $1$ 两种字符,真实发出概率分布为 $A$,但实际不知道 $A$ 的具体分布。通过观察,得到概率分布 $B$ 与 $C$,各个分布的具体情况如下:

        $\begin{array}{l} A(0)=1 / 2, A(1)=1 / 2 \\ B(0)=1 / 4, B(1)=3 / 4 \\ C(0)=1 / 8, C(1)=7 / 8 \end{array}$

      可以计算出得到如下:

        $\begin{array}{l} \mathrm{KL}(A \| B)=1 / 2 \log \left(\frac{1 / 2}{1 / 4}\right)+1 / 2 \log \left(\frac{1 / 2}{3 / 4}\right)=1 / 2 \log (4 / 3) \\\mathrm{KL}(A \| C)=1 / 2 \log \left(\frac{1 / 2}{1 / 8}\right)+1 / 2 \log \left(\frac{1 / 2}{7 / 8}\right)=1 / 2 \log (16 / 7) \end{array}$

      由上式可知,按昭概率分布  $B$  进行编码,要比按照  $C $  进行编码,平均每个符号增加的比特数目少。从分布上也可以看出,实际上  $B$  要比  $C$  更接近实际分布(因为其与  $A$  分布的相对熵更小)。

  • 相关阅读:
    前言
    npm安装全局模块之后项目提示找不到的解决
    mybatisPlus自动填充功能
    springMvc跨域的问题
    mybatisPlus逻辑删除
    java.lang.ClassNotFoundException: javax.xml.bind.JAXBException
    Maven 打包指定名称
    Host is not allowed to connect to this MySQL server
    MySQL 8.0 Public Key Retrieval is not allowed
    SpringBoot1.5 项目启动报错 (jdk.internal.loader.ClassLoaders$AppClassLoader and java.net.URLClassLoader are in module java.base of loader 'bootstrap')
  • 原文地址:https://www.cnblogs.com/BlairGrowing/p/16087078.html
Copyright © 2020-2023  润新知