1、import from numpy / list
方法:torch.from_numpy(ndarray)
常见的初始化有torch.tensor和torch.Tensor
区别:
- tensor():通过numpy 或 list 的现有数据初始化
- Tensor():
- 1、接收数据的维度(,)shape
- 2、接收现有的数据[,]
Example:
a = np.array([1,2,3])
data = torch.from_numpy(a)
print(data)
"""
输出:
tensor([1, 2, 3], dtype=torch.int32)
"""
b = np.ones([2,3])
data1 = torch.from_numpy(b)
print(data1)
"""
输出:
tensor([[1., 1., 1.],
[1., 1., 1.]], dtype=torch.float64)
"""
# 参数为 list
print(torch.tensor([2.,1.2]))
"""
输出:
tensor([2.0000, 1.2000])
"""
2、未初始化 / 设置默认类型
方法:
torch.empty(size)
torch.FloatTensor(d1,d2,d3)
torch.InrTensor(d1,d2,d3)
torch.set_default_tensor_type(torch.DoubleTensor (设置默认类型)
Example:
# 未初始化
data = torch.empty(1)
print(data)
print(torch.Tensor(2,3))
print(torch.IntTensor(3,4))
"""
输出:
tensor([0.])
tensor([[0.0000e+00, 0.0000e+00, 2.8026e-45],
[0.0000e+00, 1.4013e-45, 0.0000e+00]])
tensor([[1718379891, 1698963500, 1701013878, 1986356256],
[ 744842089, 1633899296, 1416782188, 543518841],
[1887007844, 1646275685, 543977327, 1601073006]], dtype=torch.int32)
"""
print(torch.tensor([1.,2]).type())
torch.set_default_tensor_type(torch.DoubleTensor)
print(torch.tensor([1.,2]).type())
"""
输出:
torch.FloatTensor
torch.DoubleTensor
"""
3、随机生成
torch.rand(size):产生[0,1]均匀分布的数据
torch.rand_like(input, dtype):接收tensor读取shape再用rand生成
torch.randint(low = 0, high, size):随机生成整数值tensor,范围 [min,max):左闭右开
torch.randn(size):N(0,1)均值为0,方差为1的正态分布(N(u,std))
torch.full(size, fill_value):全部赋予相同的值
torch.normal(means,std,out = None)
返回一个张量,包含从给定参数means,std的离散正态分布中抽取随机数。 均值means是一个张量,包含每个输出元素相关的正态分布的均值。 std是一个张量,包含每个输出元素相关的正态分布的标准差。 均值和标准差的形状不须匹配,但每个张量的元素个数须相同。
参数:
means (Tensor) – 均值
std (Tensor) – 标准差
out (Tensor) – 可选的输出张量
Example:
data = torch.rand(3,3)
print(data)
"""
输出:
tensor([[0.0775, 0.2610, 0.0833],
[0.7911, 0.6999, 0.6589],
[0.4790, 0.6801, 0.6582]])
"""
data_like = torch.randn_like(data)
print(data_like)
"""
输出:
tensor([[ 0.6866, 2.5939, -0.2480],
[-0.9259, -0.3617, 0.5759],
[-1.0179, -1.0938, 0.6426]])
"""
print(torch.randint(1,10,[3,3]))
"""
输出:
tensor([[7, 3, 2],
[8, 6, 7],
[7, 7, 7]])
"""
data = torch.randn(3,3)
print(data)
"""
输出:
tensor([[-0.6225, -0.1253, -0.1083],
[-0.3199, -0.5670, 0.2898],
[-0.6500, 0.9275, 1.0377]])
"""
data = torch.normal(mean=torch.full([10],0),std=torch.arange(1,0,-0.1))
print(data)
"""
输出:
tensor([-0.6509, -1.4877, 0.4740, 1.1891, 0.1009, -0.4449, -0.3422, 0.1519,
-0.2735, 0.1140])
"""
print(torch.full([2,4],7))
print(torch.full([],7)) # 标量
"""
输出:
tensor([[7., 7., 7., 7.],
[7., 7., 7., 7.]])
tensor(7.)
"""
4、序列生成
torch.arange(start, end, step)
# [start,end) 左闭右开,默认步长为1
torch.range(start, end, step) (已被arange替代)
# 包括end,step是两个点间距
torch.linspace(start, end, steps) # 等差数列
# 包括end, steps 是点的个数,包括端点, (等距离)
torch.logspace(start, end, steps) #
Example:
print(torch.arange(0,10))
print(torch.arange(0,10,2))
print(torch.linspace(0,10,steps=3))
print(torch.linspace(0,10,steps=11))
print(torch.logspace(0,-1,steps=10))
print(torch.logspace(0,1,steps=10))
"""
输出:
tensor([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
tensor([0, 2, 4, 6, 8])
tensor([ 0., 5., 10.])
tensor([ 0., 1., 2., 3., 4., 5., 6., 7., 8., 9., 10.])
tensor([1.0000, 0.7743, 0.5995, 0.4642, 0.3594, 0.2783, 0.2154, 0.1668, 0.1292,
0.1000])
tensor([ 1.0000, 1.2915, 1.6681, 2.1544, 2.7826, 3.5938, 4.6416, 5.9948,
7.7426, 10.0000])
"""
5、全零、全一、单位矩阵
torch.zeros(size)
torch.zeros_like(input, dtype)
torch.ones(size)
torch.ones_like(input, dtype)
torch.eye(size)
Example:
print(torch.ones(3,3))
print(torch.zeros(2,3))
print(torch.eye(4,4))
print(torch.eye(2))
"""
输出:
tensor([[1., 1., 1.],
[1., 1., 1.],
[1., 1., 1.]])
tensor([[0., 0., 0.],
[0., 0., 0.]])
tensor([[1., 0., 0., 0.],
[0., 1., 0., 0.],
[0., 0., 1., 0.],
[0., 0., 0., 1.]])
tensor([[1., 0.],
[0., 1.]])
"""
6、torch.randperm(n) # 生成一个0到n-1的n-1个整数的随机排列
Example:
print(torch.randperm(10))
"""
输出:
tensor([0, 1, 4, 7, 9, 8, 6, 3, 2, 5])
"""