• chapter3——逻辑回归手动+sklean版本


    1 导入numpy包

    import numpy as np

    2 sigmoid函数

    def sigmoid(x):
        return 1/(1+np.exp(-x))
    demox = np.array([1,2,3])
    print(sigmoid(demox))
    #报错
    #demox = [1,2,3]
    # print(sigmoid(demox))

    结果

    [0.73105858 0.88079708 0.95257413]

    3 定义逻辑回归模型主体

    ### 定义逻辑回归模型主体
    def logistic(x, y, w, b):
        # 训练样本量
        num_train = x.shape[0]
        # 逻辑回归模型输出
        y_hat = sigmoid(np.dot(x,w)+b)
        # 交叉熵损失
        cost = -1/(num_train)*(np.sum(y*np.log(y_hat)+(1-y)*np.log(1-y_hat))) 
        # 权值梯度
        dW = np.dot(x.T,(y_hat-y))/num_train 
        # 偏置梯度
        db = np.sum(y_hat- y)/num_train
        # 压缩损失数组维度
        cost = np.squeeze(cost)
        return y_hat, cost, dW, db

    4 初始化函数

    def init_parm(dims):
        w = np.zeros((dims,1))
        b = 0
        return w ,b 

    5 定义逻辑回归模型训练过程

    ### 定义逻辑回归模型训练过程
    def logistic_train(X, y, learning_rate, epochs):
        # 初始化模型参数
        W, b = init_parm(X.shape[1])  
        cost_list = []  
        for i in range(epochs):
            # 计算当前次的模型计算结果、损失和参数梯度
            a, cost, dW, db = logistic(X, y, W, b)    
            # 参数更新
            W = W -learning_rate * dW
            b = b -learning_rate * db        
            if i % 100 == 0:
                cost_list.append(cost)   
            if i % 100 == 0:
                print('epoch %d cost %f' % (i, cost)) 
        params = {            
            'W': W,            
            'b': b
        }        
        grads = {            
            'dW': dW,            
            'db': db
        } 
        return cost_list, params, grads

    6 定义预测函数

    def predict(X,params):
        y_pred = sigmoid(np.dot(X,params['W'])+params['b'])
        y_preds = [1 if y_pred[i]>0.5 else 0 for i in range(len(y_pred))] 
        return y_preds

    7 生成数据

    # 导入matplotlib绘图库
    import matplotlib.pyplot as plt
    # 导入生成分类数据函数
    from sklearn.datasets import make_classification
    # 生成100*2的模拟二分类数据集
    x ,label  = make_classification(
        n_samples=100,# 样本个数
        n_classes=2,# 样本类别
        n_features=2,#特征个数
        n_redundant=0,#冗余特征个数(有效特征的随机组合)
        n_informative=2,#有效特征,有价值特征
        n_repeated=0, # 重复特征个数(有效特征和冗余特征的随机组合)
        n_clusters_per_class=2 ,# 簇的个数
        random_state=1,
    )
    print("x.shape =",x.shape)
    print("label.shape = ",label.shape)
    print("np.unique(label) =",np.unique(label))
    print(set(label))
    # 设置随机数种子
    rng = np.random.RandomState(2)
    # 对生成的特征数据添加一组均匀分布噪声https://blog.csdn.net/vicdd/article/details/52667709
    x += 2*rng.uniform(size=x.shape)
    # 标签类别数
    unique_label  = set(label)
    # 根据标签类别数设置颜色
    print(np.linspace(0,1,len(unique_label)))
    colors = plt.cm.Spectral(np.linspace(0,1,len(unique_label)))
    print(colors)
    # 绘制模拟数据的散点图
    for k,col in zip(unique_label , colors):
        x_k=x[label==k]
        plt.plot(x_k[:,0],x_k[:,1],'o',markerfacecolor=col,markeredgecolor="k",
                 markersize=14)
    plt.title('Simulated binary data set')
    plt.show();

    结果

    x.shape = (100, 2)
    label.shape =  (100,)
    np.unique(label) = [0 1]
    {0, 1}
    [0. 1.]
    [[0.61960784 0.00392157 0.25882353 1.        ]
     [0.36862745 0.30980392 0.63529412 1.        ]]

        

    复习

    # 复习
    mylabel = label.reshape((-1,1))
    data = np.concatenate((x,mylabel),axis=1)
    print(data.shape)

    结果

    (100, 3)

    8 划分数据集

    offset = int(x.shape[0]*0.7)
    x_train, y_train = x[:offset],label[:offset].reshape((-1,1)) 
    x_test, y_test = x[offset:],label[offset:].reshape((-1,1)) 
    print(x_train.shape)
    print(y_train.shape)
    print(x_test.shape)
    print(y_test.shape)

    结果

    (70, 2)
    (70, 1)
    (30, 2)
    (30, 1)

    9 训练

    cost_list, params, grads = logistic_train(x_train, y_train, 0.01, 1000)
    print(params['b'])

    结果

    epoch 0 cost 0.693147
    epoch 100 cost 0.568743
    epoch 200 cost 0.496925
    epoch 300 cost 0.449932
    epoch 400 cost 0.416618
    epoch 500 cost 0.391660
    epoch 600 cost 0.372186
    epoch 700 cost 0.356509
    epoch 800 cost 0.343574
    epoch 900 cost 0.332689
    -0.6646648941379839

    10 准确率计算

    from sklearn.metrics import accuracy_score,classification_report
    y_pred = predict(x_test,params)
    print("y_pred = ",y_pred)
    print(y_pred)
    print(y_test.shape)
    print(accuracy_score(y_pred,y_test)) #不需要都是1维的,貌似会自动squeeze()
    print(classification_report(y_test,y_pred))

    结果

    y_pred =  [0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0]
    [0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0]
    (30, 1)
    0.9333333333333333
                  precision    recall  f1-score   support
    
               0       0.92      0.92      0.92        12
               1       0.94      0.94      0.94        18
    
        accuracy                           0.93        30
       macro avg       0.93      0.93      0.93        30
    weighted avg       0.93      0.93      0.93        30

    11 绘制逻辑回归决策边界

    ### 绘制逻辑回归决策边界
    def plot_logistic(X_train, y_train, params):
        # 训练样本量
        n = X_train.shape[0]
        xcord1,ycord1,xcord2,ycord2 = [],[],[],[]
        # 获取两类坐标点并存入列表
        for i in range(n):
            if y_train[i] == 1:
                xcord1.append(X_train[i][0])
                ycord1.append(X_train[i][1])
            else:
                xcord2.append(X_train[i][0])
                ycord2.append(X_train[i][1])
        fig = plt.figure()
        ax = fig.add_subplot(111)
        ax.scatter(xcord1,ycord1,s = 30,c = 'red')
        ax.scatter(xcord2,ycord2,s = 30,c = 'green')
        # 取值范围
        x =np.arange(-1.5,3,0.1)
        # 决策边界公式
        y = (-params['b'] - params['W'][0] * x) / params['W'][1]
        # 绘图
        ax.plot(x, y)
        plt.xlabel('X1')
        plt.ylabel('X2')
        plt.show()
    plot_logistic(x_train, y_train, params)

    结果

        

    11 sklearn实现

    from sklearn.linear_model import LogisticRegression
    clf = LogisticRegression(random_state=0).fit(x_train,y_train)
    y_pred = clf.predict(x_test)
    print(y_pred)
    accuracy_score(y_test,y_pred)

    结果

    [0 0 1 1 1 1 0 0 0 1 1 1 0 1 1 0 0 1 1 0 0 1 1 0 1 1 0 0 1 0]
    0.9333333333333333
  • 相关阅读:
    计算1至n中数字X出现的次数
    DOM处理
    SQL Server中日志
    怎样玩转千万级别的数据
    协议的分用以及wireshark对协议的识别
    序列化json对象,通过ajax传入asp.net mvc后台
    新时代的Vim C++自动补全插件 clang_complete
    ASP.NET Web API 接口执行时间监控
    应用之星在线app开发平台,菜鸟也会做应用
    1.11 查找空值
  • 原文地址:https://www.cnblogs.com/BlairGrowing/p/15862346.html
Copyright © 2020-2023  润新知