• 稀疏自编码器手写 Learner


    1 导入实验需要的包

    import torch
    import torch.nn as nn
    import torch.nn.functional
    import torch.optim as optim
    import torch.utils.data.dataloader as dataloader
    
    import torchvision
    import torchvision.datasets as datasets
    import torchvision.transforms as transforms
    
    import os,time
    import matplotlib.pyplot as plt
    from PIL import Image

    2 读取数据

    def get_mnist_loader(batch_size=100, shuffle=True):
        """
        :return: train_loader, test_loader
        """
        train_dataset = datasets.MNIST(root='../data',
                              train=True,
                              transform=torchvision.transforms.ToTensor(),
                              download=True)
        test_dataset = datasets.MNIST(root='../data',
                             train=False,
                             transform=torchvision.transforms.ToTensor(),
                             download=True)
    
        train_loader = torch.utils.data.DataLoader(dataset=train_dataset,
                                                   batch_size=batch_size,
                                                   shuffle=shuffle)
        test_loader = torch.utils.data.DataLoader(dataset=test_dataset,
                                                  batch_size=batch_size,
                                                  shuffle=shuffle)
        return train_loader, test_loader

    3 KL散度

    def KL_devergence(p, q):
        """
        Calculate the KL-divergence of (p,q)
        :param p:
        :param q:
        :return:
        """
        q = torch.nn.functional.softmax(q, dim=0)
        q = torch.sum(q, dim=0)/batch_size  # dim:缩减的维度,q的第一维是batch维,即大小为batch_size大小,此处是将第j个神经元在batch_size个输入下所有的输出取平均
        s1 = torch.sum(p*torch.log(p/q))
        s2 = torch.sum((1-p)*torch.log((1-p)/(1-q)))
        return s1+s2

    4 自编码器

    class AutoEncoder(nn.Module):
        def __init__(self, in_dim=784, hidden_size=30, out_dim=784):
            super(AutoEncoder, self).__init__()
            self.encoder = nn.Sequential(
                nn.Linear(in_features=in_dim, out_features=hidden_size),
                nn.ReLU()
            )
            self.decoder = nn.Sequential(
                nn.Linear(in_features=hidden_size, out_features=out_dim),
                nn.Sigmoid()
            )
    
        def forward(self, x):
            encoder_out = self.encoder(x)
            decoder_out = self.decoder(encoder_out)
            return encoder_out, decoder_out

    5 超参数定义

    batch_size = 100
    num_epochs = 50
    in_dim = 784
    hidden_size = 30
    expect_tho = 0.05

    6 训练

    train_loader, test_loader = get_mnist_loader(batch_size=batch_size, shuffle=True)
    autoEncoder = AutoEncoder(in_dim=in_dim, hidden_size=hidden_size, out_dim=in_dim)
    if torch.cuda.is_available():
        autoEncoder.cuda()  # 注:将模型放到GPU上,因此后续传入的数据必须也在GPU上
    
    Loss = nn.BCELoss()
    Optimizer = optim.Adam(autoEncoder.parameters(), lr=0.001)
    
    # 定义期望平均激活值和KL散度的权重
    tho_tensor = torch.FloatTensor([expect_tho for _ in range(hidden_size)])
    if torch.cuda.is_available():
        tho_tensor = tho_tensor.cuda()
    _beta = 3
    
    # def kl_1(p, q):
    #     p = torch.nn.functional.softmax(p, dim=-1)
    #     _kl = torch.sum(p*(torch.log_softmax(p,dim=-1)) - torch.nn.functional.log_softmax(q, dim=-1),1)
    #     return torch.mean(_kl)
    
    for epoch in range(num_epochs):
        time_epoch_start = time.time()
        for batch_index, (train_data, train_label) in enumerate(train_loader):
            if torch.cuda.is_available():
                train_data = train_data.cuda()
                train_label = train_label.cuda()
            input_data = train_data.view(train_data.size(0), -1)
            encoder_out, decoder_out = autoEncoder(input_data)
            loss = Loss(decoder_out, input_data)
    
            # 计算并增加KL散度到loss
            _kl = KL_devergence(tho_tensor, encoder_out)
            loss += _beta * _kl
    
            Optimizer.zero_grad()
            loss.backward()
            Optimizer.step()
    
            print('Epoch: {}, Loss: {:.4f}, Time: {:.2f}'.format(epoch + 1, loss, time.time() - time_epoch_start))
  • 相关阅读:
    java 随机流
    java 缓冲流
    java 文件字符输入、输出流
    【JMeter4.0】之 “jdk1.8、JMeter4.0” 安装与配置以及JMeter永久汉化和更改界面背景、并附加附录:个人学习总结
    【Selenium + Python】自动化测试之发送邮件正文以及附件同时发送
    【Mysql】之视图操作
    【Mysql】Navicat For Mysql快捷键
    【Axure插件】之浏览器打开失败
    【Mysql】之基础sql语句模板
    C语言中malloc、free和new、delete的用法和区别
  • 原文地址:https://www.cnblogs.com/BlairGrowing/p/15717519.html
Copyright © 2020-2023  润新知