• 多层自编码器手写版 Learner


    #导入实验需要的包
    import torch
    import torch.nn as nn
    import torch.utils.data as Data
    import torchvision
    import matplotlib.pyplot as plt
    from mpl_toolkits.mplot3d import Axes3D
    from matplotlib import cm
    import numpy as np
    # torch.manual_seed(1)    # reproducible
    
    #超参数
    # Hyper Parameters
    EPOCH = 10
    BATCH_SIZE = 64
    LR = 0.005         # learning rate
    DOWNLOAD_MNIST = True
    N_TEST_IMG = 5
    
    #下载数据集
    # Mnist digits dataset
    train_dataset = torchvision.datasets.MNIST(
        root='./mnist/',
        train=True,                                     # this is training data
        transform=torchvision.transforms.ToTensor(),
        download=DOWNLOAD_MNIST,                        # download it if you don't have it
    )
    
    # plot one example
    print(train_dataset.train_data.size())     # (60000, 28, 28)
    print(train_dataset.train_labels.size())   # (60000)
    plt.imshow(train_dataset.train_data[2].numpy(), cmap='gray')
    plt.title('%i' % train_dataset.train_labels[2])
    plt.show()
    
    # Data Loader for easy mini-batch return in training, the image batch shape will be (50, 1, 28, 28)
    train_loader = Data.DataLoader(dataset=train_dataset, batch_size=BATCH_SIZE, shuffle=True)
    
    #模型
    class AutoEncoder(nn.Module):
        def __init__(self):
            super(AutoEncoder, self).__init__()
    
            self.encoder = nn.Sequential(
                nn.Linear(28*28, 128),
                nn.Tanh(),
                nn.Linear(128, 64),
                nn.Tanh(),
                nn.Linear(64, 12),
                nn.Tanh(),
                nn.Linear(12, 3),   # compress to 3 features which can be visualized in plt
            )
            self.decoder = nn.Sequential(
                nn.Linear(3, 12),
                nn.Tanh(),
                nn.Linear(12, 64),
                nn.Tanh(),
                nn.Linear(64, 128),
                nn.Tanh(),
                nn.Linear(128, 28*28),
                nn.Sigmoid(),       # compress to a range (0, 1)
            )
    
        def forward(self, x):
            encoded = self.encoder(x)
            decoded = self.decoder(encoded)
            return encoded, decoded
    
    
    autoencoder = AutoEncoder().cuda()
    optimizer = torch.optim.Adam(autoencoder.parameters(), lr=LR)
    loss_func = nn.MSELoss()
    
    # initialize figure
    f, a = plt.subplots(2, N_TEST_IMG, figsize=(5, 2))
    plt.ion()   # continuously plot
    
    # original data (first row) for viewing
    view_data = train_dataset.train_data[:N_TEST_IMG].view(-1, 28*28).type(torch.FloatTensor)/255.
    for i in range(N_TEST_IMG):
        a[0][i].imshow(np.reshape(view_data.data.numpy()[i], (28, 28)), cmap='gray'); a[0][i].set_xticks(()); a[0][i].set_yticks(())
    
    for epoch in range(EPOCH):
        for step, (x, b_label) in enumerate(train_loader):
            b_x = x.view(-1, 28*28).cuda()   # batch x, shape (batch, 28*28)
            b_y = x.view(-1, 28*28).cuda()   # batch y, shape (batch, 28*28)
    
            encoded, decoded = autoencoder(b_x)
    
            loss = loss_func(decoded, b_y)      # mean square error
            optimizer.zero_grad()               # clear gradients for this training step
            loss.backward()                     # backpropagation, compute gradients
            optimizer.step()                    # apply gradients
    
            if step % 100 == 0:
                print('Epoch: ', epoch, '| train loss: %.4f' % loss.data.numpy())
    
                # plotting decoded image (second row)
                _, decoded_data = autoencoder(view_data)
                for i in range(N_TEST_IMG):
                    a[1][i].clear()
                    a[1][i].imshow(np.reshape(decoded_data.data.numpy()[i], (28, 28)), cmap='gray')
                    a[1][i].set_xticks(()); a[1][i].set_yticks(())
                plt.draw(); plt.pause(0.05)
    
    plt.ioff()
    plt.show()
    
    # visualize in 3D plot
    view_data = train_dataset.train_data[:200].view(-1, 28*28).type(torch.FloatTensor)/255.
    encoded_data, _ = autoencoder(view_data)
    fig = plt.figure(2); ax = Axes3D(fig)
    X, Y, Z = encoded_data.data[:, 0].numpy(), encoded_data.data[:, 1].numpy(), encoded_data.data[:, 2].numpy()
    values = train_dataset.train_labels[:200].numpy()
    for x, y, z, s in zip(X, Y, Z, values):
        c = cm.rainbow(int(255*s/9)); ax.text(x, y, z, s, backgroundcolor=c)
    ax.set_xlim(X.min(), X.max()); ax.set_ylim(Y.min(), Y.max()); ax.set_zlim(Z.min(), Z.max())
    plt.show()
    #导入实验需要的包
    import torch

    import torch.nn as nn
    import torch.utils.data as Data
    import torchvision
    import matplotlib.pyplot as plt
    from mpl_toolkits.mplot3d import Axes3D
    from matplotlib import cm
    import numpy as np
    # torch.manual_seed(1) # reproducible

    #超参数
    # Hyper Parameters
    EPOCH = 10
    BATCH_SIZE = 64
    LR = 0.005 # learning rate
    DOWNLOAD_MNIST = True
    N_TEST_IMG = 5

    #下载数据集
    # Mnist digits dataset
    train_dataset = torchvision.datasets.MNIST(

    root='./mnist/',
    train=True, # this is training data
    transform=torchvision.transforms.ToTensor(),
    download=DOWNLOAD_MNIST, # download it if you don't have it
    )


    # plot one example
    print(train_dataset.train_data.size()) # (60000, 28, 28)
    print(train_dataset.train_labels.size()) # (60000)
    plt.imshow(train_dataset.train_data[2].numpy(), cmap='gray')

    plt.title('%i' % train_dataset.train_labels[2])
    plt.show()

    # Data Loader for easy mini-batch return in training, the image batch shape will be (50, 1, 28, 28)
    train_loader = Data.DataLoader(dataset=train_dataset, batch_size=BATCH_SIZE, shuffle=True)


    #模型
    class AutoEncoder(nn.Module):

    def __init__(self):
    super(AutoEncoder, self).__init__()

    self.encoder = nn.Sequential(
    nn.Linear(28*28, 128),
    nn.Tanh(),
    nn.Linear(128, 64),
    nn.Tanh(),
    nn.Linear(64, 12),
    nn.Tanh(),
    nn.Linear(12, 3), # compress to 3 features which can be visualized in plt
    )

    self.decoder = nn.Sequential(
    nn.Linear(3, 12),
    nn.Tanh(),
    nn.Linear(12, 64),
    nn.Tanh(),
    nn.Linear(64, 128),
    nn.Tanh(),
    nn.Linear(128, 28*28),
    nn.Sigmoid(), # compress to a range (0, 1)
    )


    def forward(self, x):
    encoded = self.encoder(x)
    decoded = self.decoder(encoded)
    return encoded, decoded


    autoencoder = AutoEncoder().cuda()
    optimizer = torch.optim.Adam(autoencoder.parameters(), lr=LR)
    loss_func = nn.MSELoss()

    # initialize figure
    f, a = plt.subplots(2, N_TEST_IMG, figsize=(5, 2))

    plt.ion() # continuously plot

    # original data (first row) for viewing
    view_data = train_dataset.train_data[:N_TEST_IMG].view(-1, 28*28).type(torch.FloatTensor)/255.
    for i in range(N_TEST_IMG):

    a[0][i].imshow(np.reshape(view_data.data.numpy()[i], (28, 28)), cmap='gray'); a[0][i].set_xticks(()); a[0][i].set_yticks(())

    for epoch in range(EPOCH):
    for step, (x, b_label) in enumerate(train_loader):
    b_x = x.view(-1, 28*28).cuda() # batch x, shape (batch, 28*28)
    b_y = x.view(-1, 28*28).cuda() # batch y, shape (batch, 28*28)

    encoded, decoded = autoencoder(b_x)


    loss = loss_func(decoded, b_y) # mean square error
    optimizer.zero_grad() # clear gradients for this training step
    loss.backward() # backpropagation, compute gradients
    optimizer.step() # apply gradients

    if step % 100 == 0:

    print('Epoch: ', epoch, '| train loss: %.4f' % loss.data.numpy())

    # plotting decoded image (second row)
    _, decoded_data = autoencoder(view_data)

    for i in range(N_TEST_IMG):
    a[1][i].clear()
    a[1][i].imshow(np.reshape(decoded_data.data.numpy()[i], (28, 28)), cmap='gray')
    a[1][i].set_xticks(()); a[1][i].set_yticks(())
    plt.draw(); plt.pause(0.05)

    plt.ioff()
    plt.show()

    # visualize in 3D plot
    view_data = train_dataset.train_data[:200].view(-1, 28*28).type(torch.FloatTensor)/255.
    encoded_data, _ = autoencoder(view_data)

    fig = plt.figure(2); ax = Axes3D(fig)
    X, Y, Z = encoded_data.data[:, 0].numpy(), encoded_data.data[:, 1].numpy(), encoded_data.data[:, 2].numpy()
    values = train_dataset.train_labels[:200].numpy()
    for x, y, z, s in zip(X, Y, Z, values):
    c = cm.rainbow(int(255*s/9)); ax.text(x, y, z, s, backgroundcolor=c)
    ax.set_xlim(X.min(), X.max()); ax.set_ylim(Y.min(), Y.max()); ax.set_zlim(Z.min(), Z.max())
    plt.show()
  • 相关阅读:
    tf.keras 用生成器读取图片数据+预处理
    pandas时间序列操作
    jupyter notebook 字体美化
    python响应式的数据可视化工具Dash
    python 地名地址解析(省、市、区县)
    将jupyter notebook嵌入博客园的博客
    Adaboost、GBDT、xgboost的原理基础
    数据预处理:分类变量实体嵌入做特征提取
    类不平衡问题的处理办法
    word2vec原理
  • 原文地址:https://www.cnblogs.com/BlairGrowing/p/15715385.html
Copyright © 2020-2023  润新知