• 对多分类采用10折交叉验证评估实验结果


    1 导入实验所需要的包

    import torch
    import torch.nn as nn
    import numpy as np
    import torchvision
    import torchvision.transforms as transforms
    import matplotlib.pyplot as plt
    import random
    from pandas import *
    %matplotlib inline

    2 加载数据

    train_dataset = torchvision.datasets.MNIST(root='./Datasets/MNIST', train=True, transform=transforms.ToTensor(),download=True)
    test_dataset = torchvision.datasets.MNIST(root='./Datasets/MNIST', train=False, transform = transforms.ToTensor(),download=True)
    train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=32, shuffle=True)
    test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=32, shuffle=False)
    
    mnist_features = torch.cat((train_loader.dataset.data,test_loader.dataset.data),dim=0)
    mnist_labels = torch.cat((train_loader.dataset.train_labels,test_loader.dataset.test_labels))
    mnist_features = mnist_features.float()
    mnist_labels = mnist_labels.long()

    3 读取数据

    def get_data_iter(X_train, y_train, X_valid, y_valid,batch_size):
        train_dataset = torch.utils.data.TensorDataset(X_train.cuda(),y_train.cuda())
        test_dataset = torch.utils.data.TensorDataset(X_valid.cuda(),y_valid.cuda())
        train_iter = torch.utils.data.DataLoader(train_dataset,batch_size=batch_size,shuffle=True)
        test_iter = torch.utils.data.DataLoader(test_dataset,batch_size=batch_size,shuffle=False)
        return train_iter, test_iter

    4 定义模型

    #定义网络
    class LinearNet(nn.Module):
        def __init__(self,num_inputs, num_outputs, num_hiddens):
            super(LinearNet,self).__init__()
            self.linear1 = nn.Linear(num_inputs,num_hiddens)
            self.relu = nn.ReLU()
            self.linear2 = nn.Linear(num_hiddens,num_outputs)
        
        def forward(self,x):
            x = self.linear1(x)
            x = self.relu(x)
            x = self.linear2(x)
            y = self.relu(x)
            return y

    5 定义训练模型

    #模型训练
    def train(train_iter,test_iter,if_reshape,num_epochs,num_inputs,net,loss):
        optimizer = torch.optim.SGD(net.parameters(),lr=0.001)
        train_ls, test_ls = [], []
        for epoch in range(num_epochs):
            ls, count = 0, 0
            if if_reshape ==False:
                for X,y in train_iter:
                    l=loss(net(X),y.view(-1,1))
                    optimizer.zero_grad()
                    l.backward()
                    optimizer.step()
                    ls += l.item()
                    count += y.shape[0]
                train_ls.append(ls/count)
                ls, count = 0, 0
                for X,y in test_iter:
                    l=loss(net(X),y.view(-1,1))
                    ls += l.item()
                    count += y.shape[0]
            else:
                for X,y in train_iter:
                    X = X.reshape(-1,num_inputs)
                    l=loss(net(X),y).sum()
                    optimizer.zero_grad()
                    l.backward()
                    optimizer.step()
                    ls += l.item()
                    count += y.shape[0]
                train_ls.append(ls/count)
                ls, count = 0, 0
                for X,y in test_iter:
                    X = X.reshape(-1,num_inputs)
                    l=loss(net(X),y).sum()
                    ls += l.item()
                    count += y.shape[0]
            test_ls.append(ls/count)
            if(epoch+1)%5==0:
                print('epoch: %d, train loss: %f, valid loss: %f'%(epoch+1,train_ls[-1],test_ls[-1]))
        return train_ls,test_ls

    6 获取k折交叉验证某一折的训练集和验证集

    def get_kfold_data(k, i, X, y):
        fold_size = X.shape[0]//k
        val_start = i * fold_size
        if i  != k - 1:
            val_end = (i + 1) * fold_size
            X_valid, y_valid = X[val_start:val_end],y[val_start:val_end]
            X_train = torch.cat((X[0:val_start],X[val_end:]),dim=0)
            y_train = torch.cat((y[0:val_start],y[val_end:]),dim=0)
        else:
            X_valid,y_valid = X[val_start:], y[val_start:]
            X_train = X[0:val_start]
            y_train = y[0:val_start]
        
        return X_train, y_train, X_valid, y_valid

    7 K折交叉验证

    def k_fold(k, X_train, y_train,if_reshape,num_epochs,num_inputs,net,loss):
        my_k_train_ls, my_k_valid_ls = [], []
        train_loss_sum, valid_loss_sum = 0, 0
        for i in range(k):
            print('', i+1, '折验证结果')
            X_train, y_train, X_valid, y_valid = get_kfold_data(k, i, X_train, y_train)
            train_iter, valid_iter = gen_data_iter(X_train, y_train, X_valid, y_valid,batch_size=100)
            train_loss, val_loss = train(train_iter,valid_iter,if_reshape,num_epochs,num_inputs,net,loss)
            
            my_k_train_ls.append(train_loss)
            my_k_valid_ls.append(val_loss)
            train_loss_sum += train_loss[-1]
            valid_loss_sum += val_loss[-1]
        
        print("最终平均k折交叉验证结果")
        
        print(f'average train loss: {train_loss_sum/k}')
        print(f'average valid loss: {valid_loss_sum/k}')
        
        return my_k_train_ls, my_k_valid_ls

    8 训练模型

    k=10
    mynum_epochs= 20
    mynet=LinearNet(784, 10, 100).cuda()
    my_k_train_ls, my_k_valid_ls = k_fold(k, mnist_features, mnist_labels,if_reshape=True, num_epochs=mynum_epochs, num_inputs = 784, net =mynet ,loss=nn.CrossEntropyLoss())

    9 绘制损失函数图

    # 绘图
    train_loss, valid_loss = [], []
    for i in range(len(my_k_train_ls)):
        train_loss.append(my_k_train_ls[i][-1])
        valid_loss.append(my_k_valid_ls[i][-1])
        
    x = np.linspace(0,len(my_k_train_ls),len(my_k_train_ls))
    plt.plot(x,train_loss,'o-',label='train_loss',linewidth=1.5)
    plt.plot(x,valid_loss,'o-',label='valid_loss',linewidth=1.5)
    plt.xlabel('K value')
    plt.ylabel('loss')
    plt.legend()
    plt.show()

    10 绘制损失函数图表

    # 绘制表格
    from pylab import mpl
    mpl.rcParams['font.sans-serif'] = ['SimHei'] # 指定默认字体
    mpl.rcParams['axes.unicode_minus'] = False # 解决保存图像是负号'-'显示为方块的问题
    randn = np.random.randn
    idx = []
    for i in range(1,21):
        idx.append(f'epoch {i}')
    
    data_train, data_valid = np.zeros((10,20)),np.zeros((10,20))
    for i in range(10):
        for j in range(20):
            data_train[i,j], data_valid[i,j] = my_k_train_ls[i][j], my_k_valid_ls[i][j] 
           
        
    df = DataFrame(data_train.T, index=idx, columns=['第1折', '第2折', '第3折', '第4折', '第5折',
                                                    '第6折', '第7折', '第8折', '第9折', '第10折'])
    
    vals = np.around(df.values,7)
    fig = plt.figure(figsize=(8,3))
    ax = fig.add_subplot(111, frameon=False, xticks=[], yticks=[])
    the_table=plt.table(cellText=vals, rowLabels=df.index, colLabels=df.columns,
                        colWidths = [0.1]*vals.shape[1], loc='center',cellLoc='center')
    the_table.set_fontsize(20)
    
    the_table.scale(2.5,2.58)

    因上求缘,果上努力~~~~ 作者:希望每天涨粉,转载请注明原文链接:https://www.cnblogs.com/BlairGrowing/p/15513645.html

  • 相关阅读:
    升级WP应用时注意的问题——WMAppManifest.xml
    MVVM Light (Part 4)
    Windows Phone 7的About模板——Your Last About Dialog(2)支持多语言
    MVVM Light 开始
    在ScheduledTaskAgent中使用HttpWebRequest
    年会抽奖程序 支持单次单个抽奖和单次多个抽奖,自定义抽奖设置
    WIndows Phone 7的MVVM Light框架
    MVVM Light (Part 3)
    MVVM Light 行为
    [转]如何在设计中应用颜色搭配技巧
  • 原文地址:https://www.cnblogs.com/BlairGrowing/p/15513645.html
Copyright © 2020-2023  润新知