Query on A Tree
Time Limit: 20000/10000 MS (Java/Others) Memory Limit: 132768/132768 K (Java/Others)
Total Submission(s): 712 Accepted Submission(s): 266
Problem Description
Monkey A lives on a tree, he always plays on this tree.
One day, monkey A learned about one of the bit-operations, xor. He was keen of this interesting operation and wanted to practise it at once.
Monkey A gave a value to each node on the tree. And he was curious about a problem.
The problem is how large the xor result of number x and one node value of label y can be, when giving you a non-negative integer x and a node label u indicates that node y is in the subtree whose root is u(y can be equal to u).
Can you help him?
One day, monkey A learned about one of the bit-operations, xor. He was keen of this interesting operation and wanted to practise it at once.
Monkey A gave a value to each node on the tree. And he was curious about a problem.
The problem is how large the xor result of number x and one node value of label y can be, when giving you a non-negative integer x and a node label u indicates that node y is in the subtree whose root is u(y can be equal to u).
Can you help him?
Input
There are no more than 6 test cases.
For each test case there are two positive integers n and q, indicate that the tree has n nodes and you need to answer q queries.
Then two lines follow.
The first line contains n non-negative integers V1,V2,⋯,Vn, indicating the value of node i.
The second line contains n-1 non-negative integers F1,F2,⋯Fn−1, Fi means the father of node i+1.
And then q lines follow.
In the i-th line, there are two integers u and x, indicating that the node you pick should be in the subtree of u, and x has been described in the problem.
2≤n,q≤105
0≤Vi≤109
1≤Fi≤n, the root of the tree is node 1.
1≤u≤n,0≤x≤109
For each test case there are two positive integers n and q, indicate that the tree has n nodes and you need to answer q queries.
Then two lines follow.
The first line contains n non-negative integers V1,V2,⋯,Vn, indicating the value of node i.
The second line contains n-1 non-negative integers F1,F2,⋯Fn−1, Fi means the father of node i+1.
And then q lines follow.
In the i-th line, there are two integers u and x, indicating that the node you pick should be in the subtree of u, and x has been described in the problem.
2≤n,q≤105
0≤Vi≤109
1≤Fi≤n, the root of the tree is node 1.
1≤u≤n,0≤x≤109
Output
For each query, just print an integer in a line indicating the largest result.
Sample Input
2 2
1 2
1
1 3
2 1
Sample Output
2
3
题目链接:HDU 6191
本来以为是很水的一道题目(确实很水),结果被坑在update的构建顺序上WA了很久,因为是可持久化,需要上一个版本的信息,而恰好一开始是先DFS序,再for每一个元素用它的L[i]时间戳来构建,其实这是有问题的, 因为上一个元素的L[i]不一定跟当前的L[i]连续,因此要按照L[i]的顺序来构建,而不是i的顺序;构建好之后查询一下L[u]~R[u]之间的与x的异或最大值即可
代码:
#include <stdio.h> #include <iostream> #include <algorithm> #include <cstdlib> #include <cstring> #include <bitset> #include <string> #include <stack> #include <cmath> #include <queue> #include <set> #include <climits> #include <map> using namespace std; #define INF 0x3f3f3f3f #define LC(x) (x<<1) #define RC(x) ((x<<1)+1) #define MID(x,y) ((x+y)>>1) #define fin(name) freopen(name,"r",stdin) #define fout(name) freopen(name,"w",stdout) #define CLR(arr,val) memset(arr,val,sizeof(arr)) #define FAST_IO ios::sync_with_stdio(false);cin.tie(0); typedef pair<int, int> pii; typedef long long LL; const double PI = acos(-1.0); const int N = 100010; struct edge { int to, nxt; edge() {} edge(int _to, int _nxt): to(_to), nxt(_nxt) {} } E[N]; struct Trie { int nxt[2]; int cnt; void init() { nxt[0] = nxt[1] = 0; cnt = 0; } } L[N * 31]; int tot, root[N]; int head[N], etot; int ll[N], rr[N], idx; int arr[N]; void init() { L[0].init(); tot = 0; CLR(head, -1); etot = 0; idx = 0; } inline void add(int s, int t) { E[etot] = edge(t, head[s]); head[s] = etot++; } void update(int &cur, int ori, int step, LL n, int v) { cur = ++tot; L[cur] = L[ori]; L[cur].cnt += v; if (step < 0) return ; int t = (n >> step) & 1; update(L[cur].nxt[t], L[ori].nxt[t], step - 1, n, v); } int Find(int S, int E, int step, LL n) { if (step < 0) return 0; int t = (n >> step) & 1; if (L[L[E].nxt[t ^ 1]].cnt - L[L[S].nxt[t ^ 1]].cnt > 0) return (1LL << step) + Find(L[S].nxt[t ^ 1], L[E].nxt[t ^ 1], step - 1, n); else return Find(L[S].nxt[t], L[E].nxt[t], step - 1, n); } void dfs_build(int u) { ll[u] = ++idx; update(root[ll[u]], root[ll[u] - 1], 29, arr[u], 1); for (int i = head[u]; ~i; i = E[i].nxt) { int v = E[i].to; dfs_build(v); } rr[u] = idx; } int main(void) { int n, q, i; while (~scanf("%d%d", &n, &q)) { init(); for (i = 1; i <= n; ++i) scanf("%d", &arr[i]); for (i = 2; i <= n; ++i) { int f; scanf("%d", &f); add(f, i); } dfs_build(1); while (q--) { int u, x; scanf("%d%d", &u, &x); int l = ll[u], r = rr[u]; printf("%d ", Find(root[l - 1], root[r], 29, x)); } } return 0; }