• POJ——3126Prime Path(双向BFS+素数筛打表)


    Prime Path
    Time Limit: 1000MS   Memory Limit: 65536K
    Total Submissions: 16272   Accepted: 9195

    Description

    The ministers of the cabinet were quite upset by the message from the Chief of Security stating that they would all have to change the four-digit room numbers on their offices. 
    — It is a matter of security to change such things every now and then, to keep the enemy in the dark. 
    — But look, I have chosen my number 1033 for good reasons. I am the Prime minister, you know! 
    — I know, so therefore your new number 8179 is also a prime. You will just have to paste four new digits over the four old ones on your office door. 
    — No, it’s not that simple. Suppose that I change the first digit to an 8, then the number will read 8033 which is not a prime! 
    — I see, being the prime minister you cannot stand having a non-prime number on your door even for a few seconds. 
    — Correct! So I must invent a scheme for going from 1033 to 8179 by a path of prime numbers where only one digit is changed from one prime to the next prime. 

    Now, the minister of finance, who had been eavesdropping, intervened. 
    — No unnecessary expenditure, please! I happen to know that the price of a digit is one pound. 
    — Hmm, in that case I need a computer program to minimize the cost. You don't know some very cheap software gurus, do you? 
    — In fact, I do. You see, there is this programming contest going on... Help the prime minister to find the cheapest prime path between any two given four-digit primes! The first digit must be nonzero, of course. Here is a solution in the case above. 
    1033
    1733
    3733
    3739
    3779
    8779
    8179
    The cost of this solution is 6 pounds. Note that the digit 1 which got pasted over in step 2 can not be reused in the last step – a new 1 must be purchased.

    Input

    One line with a positive number: the number of test cases (at most 100). Then for each test case, one line with two numbers separated by a blank. Both numbers are four-digit primes (without leading zeros).

    Output

    One line for each case, either with a number stating the minimal cost or containing the word Impossible.

    Sample Input

    3
    1033 8179
    1373 8017
    1033 1033

    Sample Output

    6
    7
    0

    单向BFS水题,但是双向让我调试了很久,因为写单向的时候是分4种情况,然后想着双向用for来放在一个循环里好了,结果样例输出答案完全不对,只有答案为1或2的时候可能会对,不解一个早上= =刚才想着算了把for去掉写麻烦点,结果又因为忘记删掉调试输出的语句,WA几发。现在还是不知道为什么原来的for是错的。双向BFS给我一个感觉:代码真长(虽然大部分是重复的)嗯这题写完之后上学期遗留的题除了一道题意本身不清楚+大部分AC代码本身也有明显错误的那道题之外全部A掉了。看看专题训练status里我刷了好几页的历史。真是个悲伤的故事……双向的时候要按层搜索

    代码:

    #include<iostream>
    #include<algorithm>
    #include<cstdlib>
    #include<sstream>
    #include<cstring>
    #include<cstdio>
    #include<string>
    #include<deque>
    #include<stack>
    #include<cmath>
    #include<queue>
    #include<set>
    #include<map>
    using namespace std;
    #define INF 0x3f3f3f3f
    #define MM(x) memset(x,0,sizeof(x))
    #define MMINF(x) memset(x,INF,sizeof(x))
    typedef long long LL;
    const double PI=acos(-1.0);
    const int N=10010;
    int vis[N],prime[N];
    int color[N];
    struct info
    {
    	char s[6];
    	int step;
    };
    info S,T;
    int change(char s[])
    {
    	int r=0;
    	for (int i=0; i<4; i++)
    		r=r*10+s[i]-'0';
    	return r;
    }
    queue<info>Qf,Qb;
    int T_bfs()
    {
    	S.step=0;
    	T.step=0;
    	int lay=0;
    	while (!Qf.empty())
    		Qf.pop();
    	while (!Qb.empty())
    		Qb.pop();
    	Qf.push(S);
    	Qb.push(T);
    	color[change(S.s)]=1;
    	color[change(T.s)]=2;
    	while ((!Qf.empty())||(!Qb.empty()))
    	{
    		while(!Qf.empty()&&Qf.front().step==lay)
    		{
    			info now=Qf.front();		
    			Qf.pop();
    			info v=now;					
    			while (--v.s[0]>='1')
    			{
    				int num=change(v.s);
    				if(prime[num])
    				{
    					if(!color[num])
    					{
    						v.step=now.step+1;
    						color[num]=1;
    						vis[num]=v.step;
    						Qf.push(v);
    					}
    					else if(color[num]==2)
    					{
    						return vis[num]+vis[change(now.s)];
    					}
    				}
    			}
    			
    			v=now;					
    			while (++v.s[0]<='9')
    			{
    				int num=change(v.s);
    				if(prime[num])
    				{
    					if(!color[num])
    					{
    						v.step=now.step+1;
    						color[num]=1;
    						vis[num]=v.step;
    						Qf.push(v);
    					}
    					else if(color[num]==2)
    					{
    						return vis[num]+vis[change(now.s)];
    					}
    				}
    			}
    						
    			v=now;					
    			while (--v.s[1]>='0')
    			{
    				int num=change(v.s);
    				if(prime[num])
    				{
    					if(!color[num])
    					{
    						v.step=now.step+1;
    						color[num]=1;
    						vis[num]=v.step;
    						Qf.push(v);
    					}
    					else if(color[num]==2)
    					{
    						return vis[num]+vis[change(now.s)];
    					}
    				}
    			}
    			v=now;
    			while (++v.s[1]<='9')
    			{
    				int num=change(v.s);
    				if(prime[num])
    				{
    					if(!color[num])
    					{
    						v.step=now.step+1;
    						color[num]=1;
    						vis[num]=v.step;
    						Qf.push(v);
    					}
    					else if(color[num]==2)
    					{
    						return vis[num]+vis[change(now.s)];
    					}
    				}
    			}
    			
    			v=now;					
    			while (--v.s[2]>='0')
    			{
    				int num=change(v.s);
    				if(prime[num])
    				{
    					if(!color[num])
    					{
    						v.step=now.step+1;
    						color[num]=1;
    						vis[num]=v.step;
    						Qf.push(v);
    					}
    					else if(color[num]==2)
    					{
    						return vis[num]+vis[change(now.s)];
    					}
    				}
    			}
    			v=now;
    			while (++v.s[2]<='9')
    			{
    				int num=change(v.s);
    				if(prime[num])
    				{
    					if(!color[num])
    					{
    						v.step=now.step+1;
    						color[num]=1;
    						vis[num]=v.step;
    						Qf.push(v);
    					}
    					else if(color[num]==2)
    					{
    						return vis[num]+vis[change(now.s)];
    					}
    				}
    			}
    						
    			v=now;					
    			while (--v.s[3]>='0')
    			{
    				int num=change(v.s);
    				if(num%2==0)
    					continue;
    				if(prime[num])
    				{
    					if(!color[num])
    					{
    						v.step=now.step+1;
    						color[num]=1;
    						vis[num]=v.step;
    						Qf.push(v);
    					}
    					else if(color[num]==2)
    					{
    						return vis[num]+vis[change(now.s)];
    					}
    				}
    			}
    			v=now;
    			while (++v.s[3]<='9')
    			{
    				int num=change(v.s);
    				if(num%2==0)
    					continue;
    				if(prime[num])
    				{
    					if(!color[num])
    					{
    						v.step=now.step+1;
    						color[num]=1;
    						vis[num]=v.step;
    						Qf.push(v);
    					}
    					else if(color[num]==2)
    					{
    						return vis[num]+vis[change(now.s)];
    					}
    				}
    			}
    		}
    		//
    		while(!Qb.empty()&&Qb.front().step==lay)
    		{
    			info now=Qb.front();
    			Qb.pop();
    			info v=now;					
    			while (--v.s[0]>='1')
    			{
    				int num=change(v.s);
    				if(prime[num])
    				{
    					if(!color[num])
    					{
    						v.step=now.step+1;
    						color[num]=2;
    						vis[num]=v.step;
    						Qb.push(v);
    					}
    					else if(color[num]==1)
    					{
    						return vis[num]+vis[change(now.s)];
    					}
    				}
    			}
    			
    			v=now;				
    			while (++v.s[0]<='9')
    			{
    				int num=change(v.s);
    				if(prime[num])
    				{
    					if(!color[num])
    					{
    						v.step=now.step+1;
    						color[num]=2;
    						vis[num]=v.step;
    						Qb.push(v);
    					}
    					else if(color[num]==1)
    					{
    						return vis[num]+vis[change(now.s)];
    					}
    				}
    			}
    			
    			v=now;				
    			while (--v.s[1]>='0')
    			{
    				int num=change(v.s);
    				if(prime[num])
    				{
    					if(!color[num])
    					{
    						v.step=now.step+1;
    						color[num]=2;
    						vis[num]=v.step;
    						Qb.push(v);
    					}
    					else if(color[num]==1)
    					{
    						return vis[num]+vis[change(now.s)];
    					}
    				}
    			}
    			
    			v=now;					
    			while (++v.s[1]<='9')
    			{
    				int num=change(v.s);
    				if(prime[num])
    				{
    					if(!color[num])
    					{
    						v.step=now.step+1;
    						color[num]=2;
    						vis[num]=v.step;
    						Qb.push(v);
    					}
    					else if(color[num]==1)
    					{
    						return vis[num]+vis[change(now.s)];
    					}
    				}
    			}
    			////
    			
    			v=now;				
    			while (--v.s[2]>='0')
    			{
    				int num=change(v.s);
    				if(prime[num])
    				{
    					if(!color[num])
    					{
    						v.step=now.step+1;
    						color[num]=2;
    						vis[num]=v.step;
    						Qb.push(v);
    					}
    					if(color[num]==1)
    					{
    						return vis[num]+vis[change(now.s)];
    					}
    				}
    			}
    			
    			v=now;					
    			while (++v.s[2]<='9')
    			{
    				int num=change(v.s);
    				if(prime[num])
    				{
    					if(!color[num])
    					{
    						v.step=now.step+1;
    						color[num]=2;
    						vis[num]=v.step;
    						Qb.push(v);
    					}
    					else if(color[num]==1)
    					{
    						return vis[num]+vis[change(now.s)];
    					}
    				}
    			}
    			
    			//
    			
    			v=now;				
    			while (--v.s[3]>='0')
    			{
    				int num=change(v.s);
    				if(prime[num])
    				{
    					if(!color[num])
    					{
    						v.step=now.step+1;
    						color[num]=2;
    						vis[num]=v.step;
    						Qb.push(v);
    					}
    					else if(color[num]==1)
    					{
    						return vis[num]+vis[change(now.s)];
    					}
    				}
    			}
    			
    			v=now;					
    			while (++v.s[3]<='9')
    			{
    				int num=change(v.s);
    				if(prime[num])
    				{
    					if(!color[num])
    					{
    						v.step=now.step+1;
    						color[num]=2;
    						vis[num]=v.step;
    						Qb.push(v);
    					}
    					else if(color[num]==1)
    					{
    						return vis[num]+vis[change(now.s)];
    					}
    				}
    			}											
    		}
    		lay++;
    	}
    }
    int main(void)
    {
    	int tcase,i,j;
    	for (i=0; i<N; i++)
    		prime[i]=1;
    	for (i=2; i<N; ++i)
    		for (j=2; j*i<N; ++j)
    			prime[i*j]=0;
    	scanf("%d",&tcase);
    	while (tcase--)
    	{
    		MM(vis);
    		MM(color);
    		scanf("%s%s",S.s,T.s);
    		if(strcmp(S.s,T.s)==0)
    			puts("0");
    		else
    			printf("%d
    ",T_bfs()+1);
    	}
    	return 0;
    }
  • 相关阅读:
    windows照样命令行gcc/g++
    我的Linux(Ubuntu)首秀
    简单分频原理与实现——计数器
    时序分析之Arrival Time
    DDS正弦信号发生器
    C/C++ 预处理器
    时序分析之Slack
    iOS单例
    static
    深浅拷贝
  • 原文地址:https://www.cnblogs.com/Blackops/p/5766309.html
Copyright © 2020-2023  润新知