• NBOJv2 1050 Just Go(线段树/树状数组区间更新单点查询)


    Problem 1050: Just Go

    Time Limits:  3000 MS   Memory Limits:  65536 KB

    64-bit interger IO format:  %lld   Java class name:  Main


    Description

    There is a river, which contains n stones from left to right. These stones are magic, each

    one has a magic number Ai which means if you stand on the ith stone, you can jump to (i +1)th stone, (i+2)th stone, ..., (i+Ai)th stone(when i+Ai > n, you can only reach as far as n), at first, you stand on 1th stone, you want to calculate the number of ways to reach the nth stone.

    Notice: you can not jump from right to left! 

    Input

    Input starts with an integer T(1 <= T <= 10), denoting the number of test cases. Each test case contains an integer n(1 <= n <= 1e5), denoting the number stones. Next line contains n integers Ai(1 <= Ai <= 1e8). 

    Output

    For each test case, print the number of way to reach the nth stone module 1e9+7. 

    Sample Input

    3
    5
    1 2 3 4 5
    1
    10
    2
    2 1

    Output for Sample Input

    3
    1
    1


    校赛那会儿的题目,主要操作就是区间更新、单点查询,树状数组和线段树都可以,树状数组的简单很多也好写很多,线段树嘛,线段树的模版题自行体会。

    主要解题思路:刚开始肯定是1号石头初始化为1,其他的都是0,这个相信很好理解,然后就是往后覆盖区间,但却不是简单的覆盖,为了弄懂到底如何操作举个例子先,比如我到3号有a种路线,到4号有几种(假设4号只与3号连通)?当然跟3号一样,就是a种,如果3号可以跳跃的步数不止1即可以跳到5号上呢?此时会变成P5=P4+P3,即3号过来有三种,4号过来有1种(只能跳一步过来)。加起来就是4种,3->5一种,3->4>-5三种,推广出去就是不停地往后覆盖自己这个点的可到达情况数就好了,最后的答案当然就是Pn

    树状数组代码:

    #include<iostream>
    #include<algorithm>
    #include<cstdlib>
    #include<sstream>
    #include<cstring>
    #include<cstdio>
    #include<string>
    #include<deque>
    #include<stack>
    #include<cmath>
    #include<queue>
    #include<set>
    #include<map>
    using namespace std;
    #define INF 0x3f3f3f3f
    #define MM(x,y) memset(x,y,sizeof(x))
    #define LC(x) (x<<1)
    #define RC(x) ((x<<1)1)
    #define MID(x,y) ((x+y)>>1)
    typedef pair<int,int> pii;
    typedef long long LL;
    const double PI=acos(-1.0);
    const int N=100010;
    const LL mod=1000000007;
    LL tree[N],arr[N];
    
    inline int lowbit(int k)
    {
    	return k&(-k);
    }
    void add(int k,LL val)
    {
    	while (k<=100000)
    	{
    		tree[k]+=val;
    		k+=lowbit(k);
    	}
    }
    LL getsum(int k)
    {
    	LL r=0;
    	while (k)
    	{
    		r+=tree[k];
    		r%=mod;
    		k-=lowbit(k);
    	}
    	return r%mod;
    }
    void init()
    {
    	MM(tree,0);
    	MM(arr,0);
    }
    int main(void)
    {
    	int tcase,i,j,l,r,n;
    	scanf("%d",&tcase);
    	while (tcase--)
    	{
    		scanf("%d",&n);
    		init();
    		add(1,1);
    		add(2,-1);
    		for (i=1; i<=n; i++)
    		{
    			scanf("%I64d",&arr[i]);
    		}
    		for (i=1; i<=n; i++)
    		{
     			l=i+1;
    			r=i+arr[i];
    			if(r>n)
    				r=n;
    			LL pres=getsum(i);
    			add(l,pres);
    			add(r+1,-pres);
    		}
    		printf("%I64d
    ",getsum(n));
    	}
    	return 0;
    }
    

    线段树代码:

    #include<iostream>
    #include<algorithm>
    #include<cstdlib>
    #include<sstream>
    #include<cstring>
    #include<cstdio>
    #include<string>
    #include<deque>
    #include<stack>
    #include<cmath>
    #include<queue>
    #include<set>
    #include<map>
    using namespace std;
    #define INF 0x3f3f3f3f
    #define MM(x,y) memset(x,y,sizeof(x))
    #define LC(x) (x<<1)
    #define RC(x) ((x<<1)+1)
    #define MID(x,y) ((x+y)>>1)
    typedef pair<int,int> pii;
    typedef long long LL;
    const double PI=acos(-1.0);
    const int N=100010;
    const LL mod=1e9+7;
    struct info
    {
    	LL l,mid,r;
    	LL sum,add;
    };
    info T[N<<2];
    LL arr[N];
    void pushup(int k)
    {
    	T[k].sum=T[LC(k)].sum+T[RC(k)].sum;
    }
    void pushdown(int k)
    {
    	T[RC(k)].add+=T[k].add;
    	T[RC(k)].sum+=T[k].add*(T[RC(k)].r-T[RC(k)].l+1);
    	T[LC(k)].add+=T[k].add;	
    	T[LC(k)].sum+=T[k].add*(T[LC(k)].r-T[LC(k)].l+1);
    	T[k].add=0;
    }
    void build(int k,LL l,LL r)
    {
    	T[k].l=l;
    	T[k].r=r;
    	T[k].mid=MID(T[k].l,T[k].r);
    	T[k].add=0;
    	T[k].sum=0;
    	if(l==r)
    		T[k].sum=(l==1&&r==1?1:0);	
    	else
    	{
    		build(LC(k),l,T[k].mid);
    		build(RC(k),T[k].mid+1,r);
    		pushup(k);
    	}
    }
    void update(int k,LL l,LL r,LL val)
    {
    	if(r<T[k].l||l>T[k].r)
    		return ;	
    	if(l<=T[k].l&&r>=T[k].r)
    	{
    		T[k].add+=val;
    		T[k].sum+=val*(T[k].r-T[k].l+1);
    		T[k].sum%=mod;
    	}
    	else
    	{
    		if(T[k].add)
    			pushdown(k);
    		update(LC(k),l,r,val);
    		update(RC(k),l,r,val);
    		pushup(k);
    	}
    }
    LL query(int k,LL x)
    {
    	if(T[k].l==T[k].r&&T[k].l==x)
    		return T[k].sum%mod;
    	if(T[k].add)
    		pushdown(k);
    	if(x<=T[k].mid)
    		return query(LC(k),x)%mod;
    	else if(x>T[k].mid)
    		return query(RC(k),x)%mod;
    }
    int main(void)
    {
    	int tcase,i,j,n;
    	LL l,r,x,val;
    	scanf("%d",&tcase);
    	while (tcase--)
    	{
    		scanf("%d",&n);
    		MM(arr,0);
    		for (i=1; i<=n; i++)
    			scanf("%I64d",&arr[i]);
    			
    		build(1,1,n);
    		for (i=1; i<=n; i++)
    			update(1,(LL)(i+1),(LL)(i+arr[i]>n?n:i+arr[i]),query(1,i));
    					
    		printf("%I64d
    ",query(1,n)%mod);
    	}
    	return 0;
    }
  • 相关阅读:
    513. Find Bottom Left Tree Value(LeetCode)
    647. Palindromic Substrings(LeetCode)
    537. Complex Number Multiplication(LeetCode)
    338. Counting Bits(LeetCode)
    190. Reverse Bits(leetcode)
    Java多线程核心技术
    正则表达式
    linux 怎么把^M去掉
    分片与分区的区别
    《MYSQL技术精粹》读书笔记
  • 原文地址:https://www.cnblogs.com/Blackops/p/5766287.html
Copyright © 2020-2023  润新知