You are given an array a with n elements. Each element of a is either 0 or 1.
Let's denote the length of the longest subsegment of consecutive elements in a, consisting of only numbers one, as f(a). You can change no more than k zeroes to ones to maximize f(a).
The first line contains two integers n and k (1 ≤ n ≤ 3·105, 0 ≤ k ≤ n) — the number of elements in a and the parameter k.
The second line contains n integers ai (0 ≤ ai ≤ 1) — the elements of a.
On the first line print a non-negative integer z — the maximal value of f(a) after no more than k changes of zeroes to ones.
On the second line print n integers aj — the elements of the array a after the changes.
If there are multiple answers, you can print any one of them.
7 1
1 0 0 1 1 0 1
4
1 0 0 1 1 1 1
10 2
1 0 0 1 0 1 0 1 0 1
5
1 0 0 1 1 1 1 1 0 1
记录0出现的位置,随便写几组数据可以发现要判断起始点是否为0的情况。
若起始点为0,则要判断sum[r]-sum[l]+1<=k;否则要判断sum[r]-sum[l]<=k。然后再判断一下k是否为0即可
代码:
#include<iostream> #include<algorithm> #include<cstdlib> #include<sstream> #include<cstring> #include<cstdio> #include<string> #include<deque> #include<cmath> #include<queue> #include<set> #include<map> using namespace std; const int N=300010; int sufix[N]; int pos[N]; int main (void) { ios::sync_with_stdio(false); int n,k,i,j; while (cin>>n>>k) { memset(sufix,0,sizeof(sufix)); memset(pos,0,sizeof(pos)); for (i=1; i<=n; i++) { cin>>pos[i]; sufix[i]=sufix[i-1]+(pos[i]==0); } int l,r,dx,al,ar; l=1,r=1,dx=0,ar=al=0; while (l<=n&&r<=n) { bool flag=0; if(pos[l]) { if(sufix[r]-sufix[l]<=k) { if(r-l+1>=dx) { dx=r-l+1; al=l; ar=r; } } else { l++; } r++; } else { if(sufix[r]-sufix[l]+1<=k) { if(r-l+1>=dx) { dx=r-l+1; al=l; ar=r; } } else { l++; } r++; } } for (i=al; i<=ar; i++) { pos[i]=1; } if(ar==0&&al==0) cout<<0<<endl; else cout<<ar-al+1<<endl; for (i=1; i<=n; i++) { if(i==n) cout<<pos[i]<<endl; else cout<<pos[i]<<" "; } } return 0; }