• POJ 2739. Sum of Consecutive Prime Numbers


    Sum of Consecutive Prime Numbers
    Time Limit: 1000MS   Memory Limit: 65536K
    Total Submissions: 20050   Accepted: 10989

    Description

    Some positive integers can be represented by a sum of one or more consecutive prime numbers. How many such representations does a given positive integer have? For example, the integer 53 has two representations 5 + 7 + 11 + 13 + 17 and 53. The integer 41 has three representations 2+3+5+7+11+13, 11+13+17, and 41. The integer 3 has only one representation, which is 3. The integer 20 has no such representations. Note that summands must be consecutive prime 
    numbers, so neither 7 + 13 nor 3 + 5 + 5 + 7 is a valid representation for the integer 20. 
    Your mission is to write a program that reports the number of representations for the given positive integer.

    Input

    The input is a sequence of positive integers each in a separate line. The integers are between 2 and 10 000, inclusive. The end of the input is indicated by a zero.

    Output

    The output should be composed of lines each corresponding to an input line except the last zero. An output line includes the number of representations for the input integer as the sum of one or more consecutive prime numbers. No other characters should be inserted in the output.

    Sample Input

    2
    3
    17
    41
    20
    666
    12
    53
    0

    Sample Output

    1
    1
    2
    3
    0
    0
    1
    2

    Source

     

    简单打表水题,往下写之前先看看 10000 内的素数有多少个,然后就可以开数组给OJ生成了,或者自己复制粘贴好数组交上去。
    得到数组就可以对数组进行游标法遍历了,不难。甚至试除法都可以过= =
     
     1 #include <stdio.h>
     2 #include <math.h>
     3 int pr[1229];
     4 int ispr(int n)
     5 {
     6     int p=sqrt(n);
     7     for(int i=2;i<=p;i++)
     8         if(n%i==0) return 0;
     9     return 1;
    10 }
    11 int main()
    12 {
    13     int n,cnt=0;
    14     int i,j,c;
    15     long sum;
    16 
    17     for(i=2;i<=10000;i++)
    18         if(ispr(i))
    19             pr[cnt++]=i;
    20 
    21     while(~scanf("%d",&n)&&n)
    22     {
    23         c=0;
    24         for(i=0;i<cnt&&pr[i]<=n;i++)
    25         {
    26             sum=0;
    27             for(j=i;j<cnt;j++)
    28             {
    29                 sum+=pr[j];
    30                 if(sum>=n) break;
    31             }
    32             if(sum==n) c++;
    33         }
    34         printf("%d
    ",c);
    35     }
    36     return 0;
    37 }





  • 相关阅读:
    Cocos2d-x之绘制圆形
    Cocos2d-x之绘制填充矩形
    Cocos2d-x之绘制矩形
    Cocos2d-x之绘图API说明
    cocos2d-x之监听手机的物理按键
    cocos2d-x之加速度传感器
    cocos2d-x之多点触摸事件
    cocos2d-x之事件传递(onTouchBegan的返回值的作用)
    pickle
    配置文件
  • 原文地址:https://www.cnblogs.com/BlackStorm/p/4268686.html
Copyright © 2020-2023  润新知