• Codeforces Round #710 (Div. 3) ABCDE 题解


    A. Strange Table

    签到题,算出对应行列即可。

    view code
    #include<iostream>
    #include<string>
    #include<algorithm>
    #include<cstdio>
    #include<cstring>
    #include<cmath>
    #include<map>
    #include <queue>
    #include<sstream>
    #include <stack>
    #include <set>
    #include <bitset>
    #include<vector>
    #define FAST ios::sync_with_stdio(false)
    #define abs(a) ((a)>=0?(a):-(a))
    #define sz(x) ((int)(x).size())
    #define all(x) (x).begin(),(x).end()
    #define mem(a,b) memset(a,b,sizeof(a))
    #define max(a,b) ((a)>(b)?(a):(b))
    #define min(a,b) ((a)<(b)?(a):(b))
    #define rep(i,a,n) for(int i=a;i<=n;++i)
    #define per(i,n,a) for(int i=n;i>=a;--i)
    #define endl '
    '
    #define pb push_back
    #define mp make_pair
    #define fi first
    #define se second
    using namespace std;
    typedef long long ll;
    typedef pair<ll,ll> PII;
    const int maxn = 1e5+200;
    const int inf=0x3f3f3f3f;
    const double eps = 1e-7;
    const double pi=acos(-1.0);
    const int mod = 1e9+7;
    inline int lowbit(int x){return x&(-x);}
    ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
    void ex_gcd(ll a,ll b,ll &d,ll &x,ll &y){if(!b){d=a,x=1,y=0;}else{ex_gcd(b,a%b,d,y,x);y-=x*(a/b);}}//x=(x%(b/d)+(b/d))%(b/d);
    inline ll qpow(ll a,ll b,ll MOD=mod){ll res=1;a%=MOD;while(b>0){if(b&1)res=res*a%MOD;a=a*a%MOD;b>>=1;}return res;}
    inline ll inv(ll x,ll p){return qpow(x,p-2,p);}
    inline ll Jos(ll n,ll k,ll s=1){ll res=0;rep(i,1,n+1) res=(res+k)%i;return (res+s)%n;}
    inline ll read(){ ll f = 1; ll x = 0;char ch = getchar();while(ch>'9'||ch<'0') {if(ch=='-') f=-1; ch = getchar();}while(ch>='0'&&ch<='9') x = (x<<3) + (x<<1) + ch - '0',  ch = getchar();return x*f; }
    int dir[4][2] = { {1,0}, {-1,0},{0,1},{0,-1} };
    
    int main()
    {
        int kase;
        cin>>kase;
        while(kase--)
        {
            ll n = read(), m = read(), x = read();
            ll cols = x/n;
            ll rows = x%n;
            if(rows)
            {
                cout<<(rows-1)*m+cols+1<<endl;
            }
            else
            {
                cout<<(n-1)*m+cols<<endl;
            }
        }
        return 0;
    }
    
    

    B. Partial Replacement

    思路:贪心,非等到刚好k步或者苟不到下一个改变位时才变。

    view code
    #include<iostream>
    #include<string>
    #include<algorithm>
    #include<cstdio>
    #include<cstring>
    #include<cmath>
    #include<map>
    #include <queue>
    #include<sstream>
    #include <stack>
    #include <set>
    #include <bitset>
    #include<vector>
    #define FAST ios::sync_with_stdio(false)
    #define abs(a) ((a)>=0?(a):-(a))
    #define sz(x) ((int)(x).size())
    #define all(x) (x).begin(),(x).end()
    #define mem(a,b) memset(a,b,sizeof(a))
    #define max(a,b) ((a)>(b)?(a):(b))
    #define min(a,b) ((a)<(b)?(a):(b))
    #define rep(i,a,n) for(int i=a;i<=n;++i)
    #define per(i,n,a) for(int i=n;i>=a;--i)
    #define endl '
    '
    #define pb push_back
    #define mp make_pair
    #define fi first
    #define se second
    using namespace std;
    typedef long long ll;
    typedef pair<ll,ll> PII;
    const int maxn = 1e5+200;
    const int inf=0x3f3f3f3f;
    const double eps = 1e-7;
    const double pi=acos(-1.0);
    const int mod = 1e9+7;
    inline int lowbit(int x){return x&(-x);}
    ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
    void ex_gcd(ll a,ll b,ll &d,ll &x,ll &y){if(!b){d=a,x=1,y=0;}else{ex_gcd(b,a%b,d,y,x);y-=x*(a/b);}}//x=(x%(b/d)+(b/d))%(b/d);
    inline ll qpow(ll a,ll b,ll MOD=mod){ll res=1;a%=MOD;while(b>0){if(b&1)res=res*a%MOD;a=a*a%MOD;b>>=1;}return res;}
    inline ll inv(ll x,ll p){return qpow(x,p-2,p);}
    inline ll Jos(ll n,ll k,ll s=1){ll res=0;rep(i,1,n+1) res=(res+k)%i;return (res+s)%n;}
    inline ll read(){ ll f = 1; ll x = 0;char ch = getchar();while(ch>'9'||ch<'0') {if(ch=='-') f=-1; ch = getchar();}while(ch>='0'&&ch<='9') x = (x<<3) + (x<<1) + ch - '0',  ch = getchar();return x*f; }
    int dir[4][2] = { {1,0}, {-1,0},{0,1},{0,-1} };
    
    int main()
    {
        int kase;
        cin>>kase;
        while(kase--)
        {
            ll n = read(), k = read();
            string s;
            cin>>s;
            ll all = 0;
            for(int i=0; i<s.size();i++) if(s[i]=='*') all++;
            ll cnt = 0;
            int flag = 1;
            int id = -1;
            int pre = -1;
            for(int i=0; i<s.size(); i++)
            {
                if(s[i]=='*'&&flag) cnt++, flag = 0, pre = i,all--;
                else if(s[i]=='*')
                {
                    if(i-pre<k) id = i;
                    else if(i-pre==k) pre = i, cnt++, id = -1;
                    all--;
                }
                else
                {
                    if(pre!=-1&&all&&i-pre>=k) pre = id, cnt++, id = -1;
                }
            }
            if(id!=-1) cnt++;
            cout<<cnt<<endl;
        }
        return 0;
    }
    
    

    C. Double-ended Strings

    思路:数据量小,直接暴力,枚举a,b串各自的起始和终点下标al,ar,bl,br,看看这两个子串是否相等,若相等,我们就知道a和b要头部尾部要删掉多少个了,枚举更新答案即可。

    view code
    #include<iostream>
    #include<string>
    #include<algorithm>
    #include<cstdio>
    #include<cstring>
    #include<cmath>
    #include<map>
    #include <queue>
    #include<sstream>
    #include <stack>
    #include <set>
    #include <bitset>
    #include<vector>
    #define FAST ios::sync_with_stdio(false)
    #define abs(a) ((a)>=0?(a):-(a))
    #define sz(x) ((int)(x).size())
    #define all(x) (x).begin(),(x).end()
    #define mem(a,b) memset(a,b,sizeof(a))
    #define max(a,b) ((a)>(b)?(a):(b))
    #define min(a,b) ((a)<(b)?(a):(b))
    #define rep(i,a,n) for(int i=a;i<=n;++i)
    #define per(i,n,a) for(int i=n;i>=a;--i)
    #define endl '
    '
    #define pb push_back
    #define mp make_pair
    #define fi first
    #define se second
    #define ac cout<<ans<<endl
    using namespace std;
    typedef long long ll;
    typedef pair<ll,ll> PII;
    const int maxn = 1e5+200;
    const int inf=0x3f3f3f3f;
    const double eps = 1e-7;
    const double pi=acos(-1.0);
    const int mod = 1e9+7;
    inline int lowbit(int x){return x&(-x);}
    ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
    void ex_gcd(ll a,ll b,ll &d,ll &x,ll &y){if(!b){d=a,x=1,y=0;}else{ex_gcd(b,a%b,d,y,x);y-=x*(a/b);}}//x=(x%(b/d)+(b/d))%(b/d);
    inline ll qpow(ll a,ll b,ll MOD=mod){ll res=1;a%=MOD;while(b>0){if(b&1)res=res*a%MOD;a=a*a%MOD;b>>=1;}return res;}
    inline ll inv(ll x,ll p){return qpow(x,p-2,p);}
    inline ll Jos(ll n,ll k,ll s=1){ll res=0;rep(i,1,n+1) res=(res+k)%i;return (res+s)%n;}
    inline ll read(){ ll f = 1; ll x = 0;char ch = getchar();while(ch>'9'||ch<'0') {if(ch=='-') f=-1; ch = getchar();}while(ch>='0'&&ch<='9') x = (x<<3) + (x<<1) + ch - '0',  ch = getchar();return x*f; }
    int dir[4][2] = { {1,0}, {-1,0},{0,1},{0,-1} };
    
    string a,b;
    
    bool check(int al, int ar, int bl,int  br)
    {
        string tmpa, tmpb;
        for(int i=al; i<=ar; i++) tmpa += a[i];
        for(int i=bl; i<=br; i++) tmpb += b[i];
        if(tmpa==tmpb) return true;
        return false;
    }
    
    int main()
    {
        int kase;
        cin>>kase;
        while(kase--)
        {
            cin>>a>>b;
            ll ans = inf;
            for(int al=0; al<a.size(); al++) for(int ar=al;ar<a.size();ar++ ) for(int bl=0; bl<b.size(); bl++) for(int br=bl;br<b.size();br++ )
            {
                if(check(al,ar,bl,br))
                {
                    ans = min(ans,al+(int)a.size()-ar-1+bl+(int)b.size()-br-1);
                }
            }
            if(ans==inf) ans = a.size()+b.size();
            cout<<ans<<endl;
        }
        return 0;
    }
    
    

    D. Epic Transformation

    首先统计各个不同数,然后只关心不同数的个数以及他们各自有多少个。这题可能有人一开始想对p个不同数按照所含个数进行排序,然后贪心先用小的去掉大的,但是“最大”一直在变化(原最大的可能抵消几次后次大的变成最大的了),所以这种方法不够贪。
    这样考虑,当p=2时,只有两个不同数,相互匹配完剩下的那个即是答案。如1 2(这里数组表示不同数各自的个数),抵消完是0 1。
    当p=3时,如1 2 3,多加进来的一个3,它可以在原来的抵消轮里面“插入”,就是每个1<->2的抵消变成1<->3, 3<->2,这样就使得在前i-1个数最优的情况下,第i个数也能达到最优,这个插入次数即是(min(a[i]/2, round)),round是前i-1个的匹配轮数,a[i]/2是因为每一轮插入时需要两个a[i]。这样就是最优贪心了。同时因为a[i-1]可能有剩,所以a[i]要先和a[i-1]抵消完再执行上述操作。

    view code
    #include<iostream>
    #include<string>
    #include<algorithm>
    #include<cstdio>
    #include<cstring>
    #include<cmath>
    #include<map>
    #include <queue>
    #include<sstream>
    #include <stack>
    #include <set>
    #include <bitset>
    #include<vector>
    #define FAST ios::sync_with_stdio(false)
    #define abs(a) ((a)>=0?(a):-(a))
    #define sz(x) ((int)(x).size())
    #define all(x) (x).begin(),(x).end()
    #define mem(a,b) memset(a,b,sizeof(a))
    #define max(a,b) ((a)>(b)?(a):(b))
    #define min(a,b) ((a)<(b)?(a):(b))
    #define rep(i,a,n) for(int i=a;i<=n;++i)
    #define per(i,n,a) for(int i=n;i>=a;--i)
    #define endl '
    '
    #define pb push_back
    #define mp make_pair
    #define fi first
    #define se second
    using namespace std;
    typedef long long ll;
    typedef pair<ll,ll> PII;
    const int maxn = 2e5+200;
    const int inf=0x3f3f3f3f;
    const double eps = 1e-7;
    const double pi=acos(-1.0);
    const int mod = 1e9+7;
    inline int lowbit(int x){return x&(-x);}
    ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
    void ex_gcd(ll a,ll b,ll &d,ll &x,ll &y){if(!b){d=a,x=1,y=0;}else{ex_gcd(b,a%b,d,y,x);y-=x*(a/b);}}//x=(x%(b/d)+(b/d))%(b/d);
    inline ll qpow(ll a,ll b,ll MOD=mod){ll res=1;a%=MOD;while(b>0){if(b&1)res=res*a%MOD;a=a*a%MOD;b>>=1;}return res;}
    inline ll inv(ll x,ll p){return qpow(x,p-2,p);}
    inline ll Jos(ll n,ll k,ll s=1){ll res=0;rep(i,1,n+1) res=(res+k)%i;return (res+s)%n;}
    inline ll read(){ ll f = 1; ll x = 0;char ch = getchar();while(ch>'9'||ch<'0') {if(ch=='-') f=-1; ch = getchar();}while(ch>='0'&&ch<='9') x = (x<<3) + (x<<1) + ch - '0',  ch = getchar();return x*f; }
    int dir[4][2] = { {1,0}, {-1,0},{0,1},{0,-1} };
    
    ll a[maxn];
    ll each[maxn];
    ll sum[maxn];
    
    int main()
    {
        int kase;
        cin>>kase;
        while(kase--)
        {
            ll n = read();
            rep(i,1,n) a[i] = read();
            map<ll,ll> cnt;
            rep(i,1,n) cnt[a[i]]++;
            int p = 0;
            for(auto it = cnt.begin(); it != cnt.end(); it ++)
            {
                each[++p] = it->se;
            }
            sort(each+1,each+1+p);
            rep(i,1,p) a[i] = each[i];
            if(p==1)
            {
                cout<<a[1]<<endl;
                continue;
            }
            ll round =  a[1];
            a[2] -= a[1], a[1] = 0;
            rep(i,3,n)
            {
                ll balance1 = a[i-1];
                a[i] -= balance1;
                ll balance2 = min(a[i]/2, round);
                a[i] -= balance2*2;
                round += balance1 + balance2;
            }
            cout<<a[p]<<endl;
        }
        return 0;
    }
    
    

    E. Restoring the Permutation

    思路:贪心+优先队列。
    当前q[i]如果大于q[i-1]的话,说明第i位是更新位,不能动,就是q[i], 同时区间([q[i-1]+1,q[i]-1])内的数都是可以用的,存入队列(因为后面的q只会更大)。
    否则每次取队列中最大/最小的数即可。

    view code
    #include<iostream>
    #include<string>
    #include<algorithm>
    #include<cstdio>
    #include<cstring>
    #include<cmath>
    #include<map>
    #include <queue>
    #include<sstream>
    #include <stack>
    #include <set>
    #include <bitset>
    #include<vector>
    #define FAST ios::sync_with_stdio(false)
    #define abs(a) ((a)>=0?(a):-(a))
    #define sz(x) ((int)(x).size())
    #define all(x) (x).begin(),(x).end()
    #define mem(a,b) memset(a,b,sizeof(a))
    #define max(a,b) ((a)>(b)?(a):(b))
    #define min(a,b) ((a)<(b)?(a):(b))
    #define rep(i,a,n) for(int i=a;i<=n;++i)
    #define per(i,n,a) for(int i=n;i>=a;--i)
    #define endl '
    '
    #define pb push_back
    #define mp make_pair
    #define fi first
    #define se second
    using namespace std;
    typedef long long ll;
    typedef pair<ll,ll> PII;
    const int maxn = 2e5+200;
    const int inf=0x3f3f3f3f;
    const double eps = 1e-7;
    const double pi=acos(-1.0);
    const int mod = 1e9+7;
    inline int lowbit(int x){return x&(-x);}
    ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
    void ex_gcd(ll a,ll b,ll &d,ll &x,ll &y){if(!b){d=a,x=1,y=0;}else{ex_gcd(b,a%b,d,y,x);y-=x*(a/b);}}//x=(x%(b/d)+(b/d))%(b/d);
    inline ll qpow(ll a,ll b,ll MOD=mod){ll res=1;a%=MOD;while(b>0){if(b&1)res=res*a%MOD;a=a*a%MOD;b>>=1;}return res;}
    inline ll inv(ll x,ll p){return qpow(x,p-2,p);}
    inline ll Jos(ll n,ll k,ll s=1){ll res=0;rep(i,1,n+1) res=(res+k)%i;return (res+s)%n;}
    inline ll read(){ ll f = 1; ll x = 0;char ch = getchar();while(ch>'9'||ch<'0') {if(ch=='-') f=-1; ch = getchar();}while(ch>='0'&&ch<='9') x = (x<<3) + (x<<1) + ch - '0',  ch = getchar();return x*f; }
    int dir[4][2] = { {1,0}, {-1,0},{0,1},{0,-1} };
    
    ll a[maxn];
    ll b[maxn];
    ll c[maxn];
    
    int main()
    {
        int kase;
        cin>>kase;
        while(kase--)
        {
            ll n = read();
            rep(i,1,n) a[i] = read();
            b[1] = a[1];
            priority_queue<ll,vector<ll>, greater<ll> > q1;
            rep(i,1,a[1]-1) q1.push(i);
            rep(i,2,n)
            {
                if(a[i]>a[i-1])
                {
                    rep(j,a[i-1]+1,a[i]-1) q1.push(j);
                    b[i] = a[i];
                }
                else
                {
                    b[i] = q1.top();
                    q1.pop();
                }
            }
            c[1] = a[1];
            priority_queue<ll,vector<ll>, less<ll> > q2;
            rep(i,1,a[1]-1) q2.push(i);
            rep(i,2,n)
            {
                if(a[i]>a[i-1])
                {
                    rep(j,a[i-1]+1,a[i]-1) q2.push(j);
                    c[i] = a[i];
                }
                else
                {
                    c[i] = q2.top();
                    q2.pop();
                }
            }
            rep(i,1,n) cout<<b[i]<<' ';cout<<endl;
            rep(i,1,n) cout<<c[i]<<' '; cout<<endl;
        }
        return 0;
    }
    
    

  • 相关阅读:
    jQuery的选择器中的通配符[id^='code']
    chorme插件 ,在浏览器上模拟手机,pad 查看网页|前端技术开发必备插件
    http://hsax.kcpci.com:81/admin/login.aspx
    ashx页面返回json字符串|jQuery 的ajax处理请求的纠结问题
    用NPOI创建Excel、合并单元格、设置单元格样式、边框的方法
    DataTable 导入到Excel的最佳选择Npoi
    隐藏和显示服务器端控件以及Html控件
    JS只能输入数字,数字和字母等的正则表达式
    把本地表导入远程表
    [flex & bison]编译器杂谈
  • 原文地址:https://www.cnblogs.com/Bgwithcode/p/14580100.html
Copyright © 2020-2023  润新知