• Gym 102215 & 队内训练#5


    A - Rooms and Passages

    题意:找到每个数后面第一个负正对。

    从前往后比较麻烦。从后向前,先记录正数位置,一旦出现这个数的相反数即产生一对负正对,通过和前面的负正对比较更新答案。

    view code
    #include<iostream>
    #include<string>
    #include<algorithm>
    #include<cstdio>
    #include<cstring>
    #include<cmath>
    #include<map>
    #include <queue>
    #include<sstream>
    #include <stack>
    #include <set>
    #include <bitset>
    #include<vector>
    #define FAST ios::sync_with_stdio(false)
    #define abs(a) ((a)>=0?(a):-(a))
    #define sz(x) ((int)(x).size())
    #define all(x) (x).begin(),(x).end()
    #define mem(a,b) memset(a,b,sizeof(a))
    #define max(a,b) ((a)>(b)?(a):(b))
    #define min(a,b) ((a)<(b)?(a):(b))
    #define rep(i,a,n) for(int i=a;i<=n;++i)
    #define per(i,n,a) for(int i=n;i>=a;--i)
    #define endl '
    '
    #define pb push_back
    #define mp make_pair
    #define fi first
    #define se second
    using namespace std;
    typedef long long ll;
    const int maxn = 5e5+200;
    const int inf=0x3f3f3f3f;
    const double eps = 1e-7;
    const double pi=acos(-1.0);
    const int mod = 1e9+7;
    inline int lowbit(int x){return x&(-x);}
    ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
    void ex_gcd(ll a,ll b,ll &d,ll &x,ll &y){if(!b){d=a,x=1,y=0;}else{ex_gcd(b,a%b,d,y,x);y-=x*(a/b);}}//x=(x%(b/d)+(b/d))%(b/d);
    inline ll qpow(ll a,ll b,ll MOD=mod){ll res=1;a%=MOD;while(b>0){if(b&1)res=res*a%MOD;a=a*a%MOD;b>>=1;}return res;}
    inline ll inv(ll x,ll p){return qpow(x,p-2,p);}
    inline ll Jos(ll n,ll k,ll s=1){ll res=0;rep(i,1,n+1) res=(res+k)%i;return (res+s)%n;}
    inline ll read(){ ll f = 1; ll x = 0;char ch = getchar();while(ch>'9'||ch<'0') {if(ch=='-') f=-1; ch = getchar();}while(ch>='0'&&ch<='9') x = (x<<3) + (x<<1) + ch - '0',  ch = getchar();return x*f; }
    int dir[4][2] = { {1,0}, {-1,0},{0,1},{0,-1} };
    
    ll Map[maxn];
    ll ans[maxn];
    ll a[maxn];
    
    int main()
    {
        ll n = read();
        rep(i,1,n) a[i] = read();
        int pre = inf;
        per(i,n,1)
        {
            if(a[i]>0)
            {
                if(pre==inf)  Map[a[i]] = i,ans[i] = n-i+1;
                else
                {
                    ans[i] = pre - i;
                    Map[a[i]] = i;
                }
            }
            else
            {
                if(!Map[-a[i]])
                {
                    ans[i] = min(pre - i,n - i + 1);
                }
                else
                {
                    ans[i] = min(Map[-a[i]] - i,pre-i);
                    pre = min(pre,Map[-a[i]]);
                }
            }
        }
        rep(i,1,n) cout<<ans[i]<<' ';cout<<endl;
        return 0;
    }
    

    B - Rearrange Columns

    题意:给你一个(2*n)矩阵,只含有#和. , 问你在可以交换任意列的情况下能否使得#联通。

    思路:列只有四种情况
    1 #和.
    2 .和#
    3 #和#
    4 .和.
    只有在3不存在且12同时存在的时候才会NO。
    其他情况下就3放中间其他放两边即可。

    view code
    #include<iostream>
    #include<string>
    #include<algorithm>
    #include<cstdio>
    #include<cstring>
    #include<cmath>
    #include<map>
    #include <queue>
    #include<sstream>
    #include <stack>
    #include <set>
    #include <bitset>
    #include<vector>
    #define FAST ios::sync_with_stdio(false)
    #define abs(a) ((a)>=0?(a):-(a))
    #define sz(x) ((int)(x).size())
    #define all(x) (x).begin(),(x).end()
    #define mem(a,b) memset(a,b,sizeof(a))
    #define max(a,b) ((a)>(b)?(a):(b))
    #define min(a,b) ((a)<(b)?(a):(b))
    #define rep(i,a,n) for(int i=a;i<=n;++i)
    #define per(i,n,a) for(int i=n;i>=a;--i)
    #define endl '
    '
    #define pb push_back
    #define mp make_pair
    #define fi first
    #define se second
    using namespace std;
    typedef long long ll;
    
    const double eps = 1e-7;
    const double pi=acos(-1.0);
    const int mod = 1e9+7;
    inline int lowbit(int x){return x&(-x);}
    ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
    void ex_gcd(ll a,ll b,ll &d,ll &x,ll &y){if(!b){d=a,x=1,y=0;}else{ex_gcd(b,a%b,d,y,x);y-=x*(a/b);}}//x=(x%(b/d)+(b/d))%(b/d);
    inline ll qpow(ll a,ll b,ll MOD=mod){ll res=1;a%=MOD;while(b>0){if(b&1)res=res*a%MOD;a=a*a%MOD;b>>=1;}return res;}
    inline ll inv(ll x,ll p){return qpow(x,p-2,p);}
    inline ll Jos(ll n,ll k,ll s=1){ll res=0;rep(i,1,n+1) res=(res+k)%i;return (res+s)%n;}
    inline ll read(){ ll f = 1; ll x = 0;char ch = getchar();while(ch>'9'||ch<'0') {if(ch=='-') f=-1; ch = getchar();}while(ch>='0'&&ch<='9') x = (x<<3) + (x<<1) + ch - '0',  ch = getchar();return x*f; }
    int dir[4][2] = { {1,0}, {-1,0},{0,1},{0,-1} };
    
    vector<ll> fi_type;
    vector<ll> se_type;
    vector<ll> th_type;
    vector<ll> es_type;
    
    int main()
    {
        char s[3][5000];
        char ans[3][5000];
        gets(s[1]+1);
        gets(s[2]+1);
        int len = strlen(s[1]+1);
        rep(j,1,len)
        {
            if(s[1][j]=='#'&&s[2][j]=='#') fi_type.pb(j);
            else if(s[1][j]=='#'&&s[2][j]=='.') se_type.pb(j);
            else if(s[1][j]=='.'&&s[2][j]=='#') th_type.pb(j);
            else es_type.pb(j);
        }
        if(fi_type.size()==0&&se_type.size()&&th_type.size())
        {
            cout<<"NO"<<endl;
        }
        else
        {
            cout<<"YES"<<endl;
            per(j,len,1)
            {
                if(th_type.size())
                {
                    int cur = th_type[th_type.size()-1];
                    ans[1][j] = s[1][cur], ans[2][j] = s[2][cur];
                    th_type.pop_back();
                }
                else if(fi_type.size())
                {
                    int cur = fi_type[fi_type.size()-1];
                    ans[1][j] = s[1][cur], ans[2][j] = s[2][cur];
                    fi_type.pop_back();
                }
                else if(se_type.size())
                {
                    int cur = se_type[se_type.size()-1];
                    ans[1][j] = s[1][cur], ans[2][j] = s[2][cur];
                    se_type.pop_back();
                }
                else
                {
                    int cur = es_type[es_type.size()-1];
                    ans[1][j] = s[1][cur], ans[2][j] = s[2][cur];
                    es_type.pop_back();
                }
    
            }
            rep(i,1,2) rep(j,1,len)
            {
                cout<<ans[i][j];
                if(j==len) cout<<endl;
            }
        }
        return 0;
    }
    
    

    C - Jumps on a Circle

    题意:给你一个大小为p,编号从(0~p-1)的环,从0开始往前跳,步长从1开始每次增1,问跳了n次后有多少个格子被踩到过。

    思路:当前的位置即是
    pos = ({{n(n-1)}over 2}) (\%p)
    当n = 2p时 pos = 0,
    当n = 2p+1时, pos = (p(p-1)+2p + 1)%p = 1。
    即发现2p为一个循环节。所以总的遍历次数不超过2p,O(2p)遍历一遍就可以了。

    view code
    #include<iostream>
    #include<string>
    #include<algorithm>
    #include<cstdio>
    #include<cstring>
    #include<cmath>
    #include<map>
    #include <queue>
    #include<sstream>
    #include <stack>
    #include <set>
    #include <bitset>
    #include<vector>
    #define FAST ios::sync_with_stdio(false)
    #define abs(a) ((a)>=0?(a):-(a))
    #define sz(x) ((int)(x).size())
    #define all(x) (x).begin(),(x).end()
    #define mem(a,b) memset(a,b,sizeof(a))
    #define max(a,b) ((a)>(b)?(a):(b))
    #define min(a,b) ((a)<(b)?(a):(b))
    #define rep(i,a,n) for(int i=a;i<=n;++i)
    #define per(i,n,a) for(int i=n;i>=a;--i)
    #define endl '
    '
    #define pb push_back
    #define mp make_pair
    #define fi first
    #define se second
    using namespace std;
    typedef long long ll;
    typedef pair<ll,ll> PII;
    const int maxn = 1e7+200;
    const int inf=0x3f3f3f3f;
    const double eps = 1e-7;
    const double pi=acos(-1.0);
    const int mod = 1e9+7;
    inline int lowbit(int x){return x&(-x);}
    ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
    void ex_gcd(ll a,ll b,ll &d,ll &x,ll &y){if(!b){d=a,x=1,y=0;}else{ex_gcd(b,a%b,d,y,x);y-=x*(a/b);}}//x=(x%(b/d)+(b/d))%(b/d);
    inline ll qpow(ll a,ll b,ll MOD=mod){ll res=1;a%=MOD;while(b>0){if(b&1)res=res*a%MOD;a=a*a%MOD;b>>=1;}return res;}
    inline ll inv(ll x,ll p){return qpow(x,p-2,p);}
    inline ll Jos(ll n,ll k,ll s=1){ll res=0;rep(i,1,n+1) res=(res+k)%i;return (res+s)%n;}
    inline ll read(){ ll f = 1; ll x = 0;char ch = getchar();while(ch>'9'||ch<'0') {if(ch=='-') f=-1; ch = getchar();}while(ch>='0'&&ch<='9') x = (x<<3) + (x<<1) + ch - '0',  ch = getchar();return x*f; }
    int dir[4][2] = { {1,0}, {-1,0},{0,1},{0,-1} };
    
    ll vis[maxn];
    
    int main()
    {
        ll p = read(), n = read();
        n = min(n,2*p+1);
        ll cur = 0;
        vis[0] = 1;
        ll step = 1;
        ll ans = 1;
        while(n--)
        {
            cur += step;
            cur %= p;
            if(!vis[cur]) ans ++;
            vis[cur] = 1;
            step ++;
        }
        cout<<ans<<endl;
        return 0;
    }
    
    

    J - The Power of the Dark Side - 2

    题意:有n个人,每个人有三个属性,如果这个人有两个属性比其他某个人的这两个属性都高,就能打败他。现在可以在攻击的时候调整自身属性,重新分配技能点,问每个人最多能打败多少人。

    思路:贪心。肯定是先分配一个0打对方的最高的,自己剩下来的平分给自己两个属性来打对面。所以只用看自己的三者和-2(至少比对方最小两个都大1)能否大于等于对方的两个最小的和,外层遍历n个人,内层二分即可。

    view code
    #include<iostream>
    #include<string>
    #include<algorithm>
    #include<cstdio>
    #include<cstring>
    #include<cmath>
    #include<map>
    #include <queue>
    #include<sstream>
    #include <stack>
    #include <set>
    #include <bitset>
    #include<vector>
    #define FAST ios::sync_with_stdio(false)
    #define abs(a) ((a)>=0?(a):-(a))
    #define sz(x) ((int)(x).size())
    #define all(x) (x).begin(),(x).end()
    #define mem(a,b) memset(a,b,sizeof(a))
    #define max(a,b) ((a)>(b)?(a):(b))
    #define min(a,b) ((a)<(b)?(a):(b))
    #define rep(i,a,n) for(int i=a;i<=n;++i)
    #define per(i,n,a) for(int i=n;i>=a;--i)
    #define endl '
    '
    #define pb push_back
    #define mp make_pair
    #define fi first
    #define se second
    using namespace std;
    typedef long long ll;
    const int maxn = 5e5+200;
    const int inf=0x3f3f3f3f;
    const double eps = 1e-7;
    const double pi=acos(-1.0);
    const int mod = 1e9+7;
    inline int lowbit(int x){return x&(-x);}
    ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
    void ex_gcd(ll a,ll b,ll &d,ll &x,ll &y){if(!b){d=a,x=1,y=0;}else{ex_gcd(b,a%b,d,y,x);y-=x*(a/b);}}//x=(x%(b/d)+(b/d))%(b/d);
    inline ll qpow(ll a,ll b,ll MOD=mod){ll res=1;a%=MOD;while(b>0){if(b&1)res=res*a%MOD;a=a*a%MOD;b>>=1;}return res;}
    inline ll inv(ll x,ll p){return qpow(x,p-2,p);}
    inline ll Jos(ll n,ll k,ll s=1){ll res=0;rep(i,1,n+1) res=(res+k)%i;return (res+s)%n;}
    inline ll read(){ ll f = 1; ll x = 0;char ch = getchar();while(ch>'9'||ch<'0') {if(ch=='-') f=-1; ch = getchar();}while(ch>='0'&&ch<='9') x = (x<<3) + (x<<1) + ch - '0',  ch = getchar();return x*f; }
    int dir[4][2] = { {1,0}, {-1,0},{0,1},{0,-1} };
    
    typedef struct Information
    {
        ll sum2;
        ll sum3;
        ll id;
        Information(){}
        Information(ll a, ll b): sum2(a), sum3(b){}
        bool operator< (const Information& a)
        {
            if(sum2!=a.sum2)
            return sum2 < a.sum2;
            return sum3 < a.sum3;
        }
    }I;
    I a[maxn];
    ll Ans[maxn];
    ll Map[maxn];
    
    int main()
    {
        ll n = read();
        rep(i,1,n)
        {
            ll b[5];
            b[1] = read(), b[2] = read(), b[3] = read();
            sort(b+1,b+1+3);
            a[i].sum2 = b[1] + b[2];
            a[i].sum3 = b[1] + b[2] + b[3];
            a[i].id = i;
        }
        sort(a+1,a+1+n);
        ll ans = 0;
        a[n+1].sum2 = 1e15;
        rep(i,1,n)
        {
            int idx = lower_bound(a+1,a+1+n,Information(a[i].sum3-2,1e15)) - a;
            if(idx==i) idx--;
            else if(a[idx].sum2==a[i].sum3-2) ;
            else
            {
                if(a[i].sum2>=a[idx].sum2)
                idx --;
                else idx -= 2;
            }
            Ans[a[i].id] = idx;
        }
        rep(i,1,n) cout<<Ans[i]<<' ';
        cout<<endl;
        //cout<<ans<<endl;
        return 0;
    }
    

  • 相关阅读:
    josn类库引用
    WPF圆角按钮
    C#实现某一属性值变化时触发事件 Form1_changeEvent是对应的事件
    C#winform生成安装包
    特性
    反射可以动态调用对象(一般是类)的名称,属性,方法等。具体见下。重要
    原子操作 和Inerlocked 常用于多线程同步
    spingboot 配置多个数据源报错
    Address already in use: JVM_Bind 端口被占用的几个解决办法
    数据库问题(一)
  • 原文地址:https://www.cnblogs.com/Bgwithcode/p/13948015.html
Copyright © 2020-2023  润新知