• Codeforces Round #619 (Div. 2) ABC 题解


    A. Three Strings

    题意:每次可以把c[i]拿去和a[i]或b[i]交换。 问你能否把ab变成相等。

    思路:在ab不相等的时候看看c能不能与一方相等来中和。不能的话就不行。

    view code
    #include<iostream>
    #include<string>
    #include<algorithm>
    #include<cstdio>
    #include<cstring>
    #include<cmath>
    #include<map>
    #include <queue>
    #include<sstream>
    #include <stack>
    #include <set>
    #include <bitset>
    #include<vector>
    #define FAST ios::sync_with_stdio(false)
    #define abs(a) ((a)>=0?(a):-(a))
    #define sz(x) ((int)(x).size())
    #define all(x) (x).begin(),(x).end()
    #define mem(a,b) memset(a,b,sizeof(a))
    #define max(a,b) ((a)>(b)?(a):(b))
    #define min(a,b) ((a)<(b)?(a):(b))
    #define rep(i,a,n) for(int i=a;i<=n;++i)
    #define per(i,n,a) for(int i=n;i>=a;--i)
    #define pb push_back
    #define mp make_pair
    #define fi first
    #define se second
    using namespace std;
    typedef long long ll;
    typedef pair<ll,ll> PII;
    const int maxn = 1e5+200;
    const int inf=0x3f3f3f3f;
    const double eps = 1e-7;
    const double pi=acos(-1.0);
    const int mod = 1e9+7;
    inline int lowbit(int x){return x&(-x);}
    ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
    void ex_gcd(ll a,ll b,ll &d,ll &x,ll &y){if(!b){d=a,x=1,y=0;}else{ex_gcd(b,a%b,d,y,x);y-=x*(a/b);}}//x=(x%(b/d)+(b/d))%(b/d);
    inline ll qpow(ll a,ll b,ll MOD=mod){ll res=1;a%=MOD;while(b>0){if(b&1)res=res*a%MOD;a=a*a%MOD;b>>=1;}return res;}
    inline ll inv(ll x,ll p){return qpow(x,p-2,p);}
    inline ll Jos(ll n,ll k,ll s=1){ll res=0;rep(i,1,n+1) res=(res+k)%i;return (res+s)%n;}
    inline ll read(){ ll f = 1; ll x = 0;char ch = getchar();while(ch>'9'||ch<'0') {if(ch=='-') f=-1; ch = getchar();}while(ch>='0'&&ch<='9') x = (x<<3) + (x<<1) + ch - '0',  ch = getchar();return x*f; }
    int dir[4][2] = { {1,0}, {-1,0},{0,1},{0,-1} };
    
    int main()
    {
        int kase;
        cin>>kase;
        while(kase--)
        {
            string a, b , c;
            cin>>a>>b>>c;
            int flag = 1;
            for(int i=0; i<a.size(); i++)
            {
                if(c[i]==a[i]||c[i]==b[i]) continue;
                flag = 0; break;
            }
            puts(flag?"YES":"NO");
        }
        return 0;
    }
    
    

    B. Motarack's Birthday

    题意:给一个序列,除了若干-1外全是正数,问把所有-1替换成k后,这个序列的max(abs(a[i+1] - a[i]))的最小值为多少。

    思路:其实-1改变后能产生影响的也就是它相邻的非-1的数。我们只需要统计一下和-1相邻的值的最大值和最小值找出来。k为(最大值+最小值)/2是最优的。

    view code
    #include<iostream>
    #include<string>
    #include<algorithm>
    #include<cstdio>
    #include<cstring>
    #include<cmath>
    #include<map>
    #include <queue>
    #include<sstream>
    #include <stack>
    #include <set>
    #include <bitset>
    #include<vector>
    #define FAST ios::sync_with_stdio(false)
    #define abs(a) ((a)>=0?(a):-(a))
    #define sz(x) ((int)(x).size())
    #define all(x) (x).begin(),(x).end()
    #define mem(a,b) memset(a,b,sizeof(a))
    #define max(a,b) ((a)>(b)?(a):(b))
    #define min(a,b) ((a)<(b)?(a):(b))
    #define rep(i,a,n) for(int i=a;i<=n;++i)
    #define per(i,n,a) for(int i=n;i>=a;--i)
    #define pb push_back
    #define mp make_pair
    #define fi first
    #define se second
    using namespace std;
    typedef long long ll;
    typedef pair<ll,ll> PII;
    const int maxn = 4e5+200;
    const int inf=0x3f3f3f3f;
    const double eps = 1e-7;
    const double pi=acos(-1.0);
    const int mod = 1e9+7;
    inline int lowbit(int x){return x&(-x);}
    ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
    void ex_gcd(ll a,ll b,ll &d,ll &x,ll &y){if(!b){d=a,x=1,y=0;}else{ex_gcd(b,a%b,d,y,x);y-=x*(a/b);}}//x=(x%(b/d)+(b/d))%(b/d);
    inline ll qpow(ll a,ll b,ll MOD=mod){ll res=1;a%=MOD;while(b>0){if(b&1)res=res*a%MOD;a=a*a%MOD;b>>=1;}return res;}
    inline ll inv(ll x,ll p){return qpow(x,p-2,p);}
    inline ll Jos(ll n,ll k,ll s=1){ll res=0;rep(i,1,n+1) res=(res+k)%i;return (res+s)%n;}
    inline ll read(){ ll f = 1; ll x = 0;char ch = getchar();while(ch>'9'||ch<'0') {if(ch=='-') f=-1; ch = getchar();}while(ch>='0'&&ch<='9') x = (x<<3) + (x<<1) + ch - '0',  ch = getchar();return x*f; }
    int dir[4][2] = { {1,0}, {-1,0},{0,1},{0,-1} };
    
    ll a[maxn];
    
    int main()
    {
        int kase;
        cin>>kase;
        while(kase--)
        {
            ll n = read();
            rep(i,1,n) a[i] = read();
            ll ma = -1, mi = inf;
            a[0] = a[n+1] = -1;
            int flag = 0;
            rep(i,1,n)
            {
                if(a[i]!=-1) flag=1;
                if(a[i]==-1)
                {
                    if(a[i-1]!=-1)
                    ma = max(ma, a[i-1]), mi = min(mi, a[i-1]);
                    if(a[i+1]!=-1)
                    ma = max(ma, a[i+1]), mi = min(mi, a[i+1]);
                }
            }
            if(!flag) cout<<0<<' '<<0<<'
    ';
            else
            {
                ll m = max(ma-(ma+mi)/2, (ma+mi)/2 - mi);
                rep(i,1,n) if(a[i]==-1) a[i] = (ma+mi)/2;
                rep(i,1,n-1)
                {
                    m = max(m, abs(a[i+1] - a[i]));
                }
                cout<<m<<' '<<(ma+mi)/2<<'
    ';
            }
        }
        return 0;
    }
    
    

    C. Ayoub's function

    题意:定义f(s)为s串在长度1<=l,r<=|s|的满足有一个1的区间个数总和。

    思路:容斥定理。 想到要直接通过1统计f(x)会很麻烦。我们可以考虑从0的角度入手。
    f(x)区间里面有1就行,那就相当于是全排列 - 全为0的方案数。
    考虑有一块长度为l的0串,f(x) = n(n+1)/2 - l(l+1)/2 。我们想要后者越小越好,所以想到把0的块分散开来。
    而我们有m个1,可以分开m+1个0,每块有(n-m)/(m+1)个0 。 然后用余下来的0尽量均摊,多出来的贡献是((n-m)/(m+1)+1)*(n-m)/(m+1)。最后用总数减去即可。

    view code
    #include<iostream>
    #include<string>
    #include<algorithm>
    #include<cstdio>
    #include<cstring>
    #include<cmath>
    #include<map>
    #include <queue>
    #include<sstream>
    #include <stack>
    #include <set>
    #include <bitset>
    #include<vector>
    #define FAST ios::sync_with_stdio(false)
    #define abs(a) ((a)>=0?(a):-(a))
    #define sz(x) ((int)(x).size())
    #define all(x) (x).begin(),(x).end()
    #define mem(a,b) memset(a,b,sizeof(a))
    #define max(a,b) ((a)>(b)?(a):(b))
    #define min(a,b) ((a)<(b)?(a):(b))
    #define rep(i,a,n) for(int i=a;i<=n;++i)
    #define per(i,n,a) for(int i=n;i>=a;--i)
    #define pb push_back
    #define mp make_pair
    #define fi first
    #define se second
    using namespace std;
    typedef long long ll;
    typedef pair<ll,ll> PII;
    const int maxn = 1e5+200;
    const int inf=0x3f3f3f3f;
    const double eps = 1e-7;
    const double pi=acos(-1.0);
    const int mod = 1e9+7;
    inline int lowbit(int x){return x&(-x);}
    ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
    void ex_gcd(ll a,ll b,ll &d,ll &x,ll &y){if(!b){d=a,x=1,y=0;}else{ex_gcd(b,a%b,d,y,x);y-=x*(a/b);}}//x=(x%(b/d)+(b/d))%(b/d);
    inline ll qpow(ll a,ll b,ll MOD=mod){ll res=1;a%=MOD;while(b>0){if(b&1)res=res*a%MOD;a=a*a%MOD;b>>=1;}return res;}
    inline ll inv(ll x,ll p){return qpow(x,p-2,p);}
    inline ll Jos(ll n,ll k,ll s=1){ll res=0;rep(i,1,n+1) res=(res+k)%i;return (res+s)%n;}
    inline ll read(){ ll f = 1; ll x = 0;char ch = getchar();while(ch>'9'||ch<'0') {if(ch=='-') f=-1; ch = getchar();}while(ch>='0'&&ch<='9') x = (x<<3) + (x<<1) + ch - '0',  ch = getchar();return x*f; }
    int dir[4][2] = { {1,0}, {-1,0},{0,1},{0,-1} };
    
    int main()
    {
        int kase;
        cin>>kase;
        while(kase--)
        {
            ll n = read(), m = read();
            ll zeros = n - m;
            ll len = zeros/(m+1);
            ll Left = zeros%(m+1);
            ll ans_zeros = ( (len+1)*len/2 ) * (m+1) + Left*(len+1);
            ll ans_all = (n+1)*n/2;
            cout<<ans_all - ans_zeros<<'
    ';
        }
        return 0;
    }
    
    

  • 相关阅读:
    scikit-learn
    caffe
    大型云原生项目在数字化企业落地过程解密
    「澳洋主数据项目」主数据促企业变革
    Docker镜像仓库清理的探索之路
    用友云开发者中心助你上云系列之在线调试
    如何精简企业主数据“裹脚布”
    企业推动移动化战略中为什么需要Moli?
    欧派家居牵手用友云平台 打造标准化数据资产管理平台
    用友云开发者中心,你应该知道的那些事
  • 原文地址:https://www.cnblogs.com/Bgwithcode/p/13642520.html
Copyright © 2020-2023  润新知