• 01分数规划讲解


      分数规划是将某个求解最优性问题转化为判定性问题,一般的形式为f(x)=a(x)/b=(x),求解f(x)的最优值,其中a,b,x为连续实数函数。

      我们这里讨论f的最小值,即设w=min(f(x)=a(x)/b(x)),那么w=f(xmin)=a(xmin)/b(xmin)=>a(xmin)-w*b(xmin)=0

      那么我们设一个新的函数g(w),g(w)=min(a(x)-w*b(x)),首先我们可以得到这个函数的一些性质。

    性质:

      单减性:即对于任意w1<w2都有g(w1)>g(w2),证明比较容易,假设x1为w1的最优解,x2为w2的最优解,那么有

        g(w1)=a(x1)-w1*b(x1)>a(x1)-w2*b(x1)>=a(x2)-w2*b(x2)=g(w2)

      唯一性:当且仅当g(w)=0时,w为原问题的最优解。这一性质又被称作Dinkelbach定理。首先我们要证明这一性质,需要证明g(w)=0是w为最优解的充分必要条件。

        首先证明必要性,即对于w为最优解时,g(w)=0。设最优解为wmin,那么我们有

        wmin=a(xmin)/b(xmin)<=a(x)/b(x),也就是a(x)-wmin*b(x)>=0,因为g(w)是取最小值,所以g(wmin)=0

        然后证明充分性,即对于g(w)=0时,w为原文题的最优解。

        采用反证法,假设w’比w更优,那么w’=a(x')/b(x')<w,那么a(x')-w*b(x')<0,也就是g(w)<0,与题设g(w)=0不符。

    这时候,我们可以通过求出来g(w)的值判断w是否为最优解,这样就将原问题的最优性问题转换为了判定性问题。

    比如bzoj3232 http://61.187.179.132/JudgeOnline/problem.php?id=3232

    这道题要求求v/c的最优值,这样不容易求解,但是我们可以用网络流最小割求出v-w*c的最小值,然后判断与0的关系,这样二分求解。

    //By BLADEVIL
    const
        lim                         =1e-5;
          
    var
        n, m                        :longint;
        pre, other                  :array[0..100010] of longint;
        len                         :array[0..100010] of extended;
        last                        :array[0..3010] of longint;
        tot                         :longint;
        num                         :array[0..60,0..60] of longint;
        key, heng, shu              :array[0..60,0..60] of longint;
        sum                         :longint;
        print                       :extended;
        que, d                      :array[0..3010] of longint;
        source, sink                :longint;
          
    function min(a,b:extended):extended;
    begin
        if a>b then min:=b else min:=a;
    end;
      
    function judge(x:extended):extended;
    begin
        if abs(x)<lim then exit(0);
        if x<0 then exit(-1) else exit(1);
    end;
          
    procedure connect(x,y:longint;z:extended);
    begin
        inc(tot);
        pre[tot]:=last[x];
        last[x]:=tot;
        other[tot]:=y;
        len[tot]:=z;
    end;
          
    procedure init;
    var
        i, j                        :longint;
          
    begin
        read(n,m);
        for i:=1 to n do
            for j:=1 to m do num[i,j]:=(i-1)*m+j;
        for i:=1 to n do
            for j:=1 to m do
            begin
                read(key[i,j]);
                sum:=sum+key[i,j];
            end;
        for i:=1 to n+1 do
            for j:=1 to m do read(heng[i,j]);
        for i:=1 to n do
            for j:=1 to m+1 do read(shu[i,j]);
        source:=num[n,m]+2;
        sink:=source+1;
    end;
      
    function bfs:boolean;
    var
        q, p                        :longint;
        h, t, cur                   :longint;
    begin
        fillchar(d,sizeof(d),0);
        d[source]:=1;
        h:=0; t:=1; que[1]:=source;
        while h<t do
        begin
            inc(h);
            cur:=que[h];
            q:=last[cur];
            while q<>0 do
            begin
                p:=other[q];
                if (judge(len[q])>0) and (d[p]=0) then
                begin
                    inc(t);
                    que[t]:=p;
                    d[p]:=d[cur]+1;
                    if p=sink then exit(true);
                end;
                q:=pre[q];
            end;
        end;
        exit(false);
    end;
      
    function dinic(x:longint;flow:extended):extended;
    var
        rest, tmp                   :extended;
        q, p                        :longint;
          
    begin
        if x=sink then exit(flow);
        rest:=flow;
        q:=last[x];
        while q<>0 do
        begin
            p:=other[q];
            if (judge(len[q])>0) and (d[p]=d[x]+1) and (rest>0) then
            begin
                tmp:=dinic(p,min(rest,len[q]));
                rest:=rest-tmp;
                len[q]:=len[q]-tmp;
                len[q xor 1]:=len[q xor 1]+tmp;
            end;
            q:=pre[q];
        end;
        exit(flow-rest);
    end;
      
    procedure main;
    var
        l, r, mid                   :extended;
        cur                         :longint;
        ans                         :extended;
        i, j                        :longint;
          
    begin
        l:=0; r:=90;
        while r-l>lim do
        begin
            mid:=(l+r)/2;
            fillchar(last,sizeof(last),0);
            tot:=1;
            for i:=1 to n do
                for j:=1 to m do
                begin
                    connect(source,num[i,j],key[i,j]);
                    connect(num[i,j],source,0);
                end;
              
            for i:=1 to n do
                for j:=1 to m do
                begin
                    cur:=0;
                    if i=1 then inc(cur,heng[i,j]);
                    if i=n then inc(cur,heng[i+1,j]);
                    if j=1 then inc(cur,shu[i,j]);
                    if j=m then inc(cur,shu[i,j+1]);
                    if cur>0 then
                    begin
                        connect(num[i,j],sink,cur*mid);
                        connect(sink,num[i,j],0);
                    end;
                end;
            for i:=1 to n-1 do
                for j:=1 to m do
                begin
                    connect(num[i,j],num[i+1,j],heng[i+1,j]*mid);
                    connect(num[i+1,j],num[i,j],heng[i+1,j]*mid);
                end;
            for i:=1 to n do
                for j:=1 to m-1 do
                begin
                    connect(num[i,j],num[i,j+1],shu[i,j+1]*mid);
                    connect(num[i,j+1],num[i,j],shu[i,j+1]*mid);
                end;
            ans:=0;
            while bfs do
                ans:=ans+dinic(source,maxlongint);
            if judge(sum-ans)>0 then l:=mid else r:=mid;
        end;
        writeln(l:0:3);
    end;
      
    begin
        init;
        main;
    end.
  • 相关阅读:
    单例和静态类
    Aggregate
    lc.exe已退出代码为1
    MVC 使用entity framework 访问数据库 发布IIS
    MVC 发布
    Nhiberate (三)测试
    Nhiberate (二) 搭项目
    初次安装git配置
    十大Intellij IDEA快捷键(转)
    Git强制覆盖master分支
  • 原文地址:https://www.cnblogs.com/BLADEVIL/p/3511013.html
Copyright © 2020-2023  润新知