• 莫队算法讲解


      莫队算法的大体思路就是暴力的转移,尽量的减少转移的时间。

      假设我们求出了区间[l1,r1]的答案,那么对于区间[l1,r1+1]我们可以o(1)的转移,对于不同的询问,我们将l当做横坐标,r当做纵坐标,这样建立的一张图,求最小manhattan生成树,需要转移的时间是最少的。

      但是求一颗manhattan最小生成树的时间已经比较长了,所以我们退而求其次。将n个询问分成floor(sqrt(n))个块,对于每个块我们按照r排序,然后每个块之间暴力的转移,经莫涛证明,时间复杂度是O(n^1.5)的。理论上所有的区间询问都可以用这种方法尝试。

      经典的应用为bzoj 2038:http://61.187.179.132/JudgeOnline/problem.php?id=2038

    /**************************************************************
        Problem: 2038
        User: BLADEVIL
        Language: Pascal
        Result: Accepted
        Time:3136 ms
        Memory:2572 kb
    ****************************************************************/
     
    //By BLADEVIL
    type
        rec                         =record
            l, r, w, s              :longint;
        end;
         
    var
     
        n, m                        :longint;
        c, size                     :array[0..50010] of int64;
        len                         :longint;
        a                           :array[0..50010] of rec;
        now                         :longint;
        col, ans                    :array[0..50010] of int64;
        all, num                    :int64;
         
    procedure swap(var a,b:longint);
    var
        c                           :longint;
    begin
        c:=a; a:=b; b:=c;
    end;
     
    procedure swap_rec(var a,b:rec);
    var
        c                           :rec;
    begin
        c:=a; a:=b; b:=c;
    end;
     
    function gcd(a,b:int64):int64;
    begin
        if a<b then exit(gcd(b,a)) else
        if b=0 then exit(a) else exit(gcd(b,a mod b));
    end;
     
    procedure qs(low,high:longint);
    var
        i, j, xx, yy                :longint;
    begin
        i:=low; j:=high; xx:=a[(i+j) div 2].w;
        yy:=a[(i+j) div 2].r;
        while i<j do
        begin
            while (a[i].w<xx) or (a[i].w=xx) and (a[i].r<yy) do inc(i);
            while (a[j].w>xx) or (a[j].w=xx) and (a[j].r>yy) do dec(j);
            if i<=j then
            begin
                swap_rec(a[i],a[j]);
                inc(i); dec(j);
            end;
        end;
        if i<high then qs(i,high);
        if j>low then qs(low,j);
    end;
         
    procedure init;
    var
        i                           :longint;
         
    begin
        read(n,m);
        for i:=1 to n do read(c[i]);
        len:=trunc(sqrt(m));
        for i:=1 to m do
        begin
            read(a[i].l,a[i].r);
            if a[i].l>a[i].r then swap(a[i].l,a[i].r);
            size[i]:=a[i].r-a[i].l+1;
            a[i].w:=a[i].l div len+1;
            a[i].s:=i;
        end;
        qs(1,m);
    end;
         
    procedure main;
    var
        i, j                        :longint;
    begin
        i:=1;
        while i<=m do
        begin
            now:=a[i].w;
            fillchar(col,sizeof(col),0);
            for j:=a[i].l to a[i].r do
            begin
                ans[a[i].s]:=ans[a[i].s]+2*(col[c[j]]);
                col[c[j]]:=col[c[j]]+1;
            end;
            inc(i);
            while a[i].w=now do
            begin
                ans[a[i].s]:=ans[a[i-1].s];
                for j:=a[i-1].r+1 to a[i].r do
                begin
                    ans[a[i].s]:=ans[a[i].s]+2*(col[c[j]]);
                    col[c[j]]:=col[c[j]]+1;
                end;
                if a[i-1].l<a[i].l then
                begin
                    for j:=a[i-1].l to a[i].l-1 do
                    begin
                        col[c[j]]:=col[c[j]]-1;
                        ans[a[i].s]:=ans[a[i].s]-2*col[c[j]];
                    end;
                end else
                    for j:=a[i].l to a[i-1].l-1 do
                    begin
                        ans[a[i].s]:=ans[a[i].s]+2*(col[c[j]]);
                        col[c[j]]:=col[c[j]]+1;
                    end;
                inc(i);
                if i>m then break;
            end;
        end;
        for i:=1 to m do
        begin
            if size[i]=1 then all:=1 else all:=size[i]*(size[i]-1);
            num:=gcd(ans[i],all);
            writeln(ans[i] div num,'/',all div num);
        end;
    end;
         
         
    begin
        init;
        main;
    end.
  • 相关阅读:
    Freckles (最小生成树)
    素数筛法 模板
    Least Common Multiple (最小公倍数,先除再乘)
    Watering Grass (贪心,最小覆盖)
    Minimal coverage (贪心,最小覆盖)
    今年暑假不AC (贪心)
    Bzoj1072 [SCOI2007]排列perm
    Bzoj1087 [SCOI2005]互不侵犯King
    POJ1185 炮兵阵地
    POJ3254 Corn Fields
  • 原文地址:https://www.cnblogs.com/BLADEVIL/p/3510850.html
Copyright © 2020-2023  润新知