首先将坐标系顺时针旋转45度,得到一个新的坐标系,这个坐标系
对应的坐标的manhattan距离就是原图中的距离,然后快排,利用前缀和
数组O(N)求所有的答案,然后找最小值就行了,总时间O(NlogN),今天
体力不足,在此不再赘述。。。
/************************************************************** Problem: 3170 User: BLADEVIL Language: Pascal Result: Accepted Time:860 ms Memory:19756 kb ****************************************************************/ //By BLADEVIL var n :int64; size :array[0..2,0..500010] of int64; ans :array[0..500010] of int64; sum :array[0..500010] of int64; print :int64; function min(a,b:int64):int64; begin if a>b then min:=b else min:=a; end; procedure swap(var a,b:int64); var c :int64; begin c:=a; a:=b; b:=c; end; procedure init; var i :longint; x, y :int64; begin read(n); for i:=1 to n do begin read(x,y); size[1,i]:=x+y; size[2,i]:=y-x; end; end; procedure qs(low,high,s:int64); var i, j, xx :int64; begin i:=low; j:=high; xx:=size[s,(i+j) div 2]; while i<j do begin while size[s,i]<xx do inc(i); while size[s,j]>xx do dec(j); if i<=j then begin swap(size[1,i],size[1,j]); swap(size[2,i],size[2,j]); swap(ans[i],ans[j]); inc(i); dec(j); end; end; if i<high then qs(i,high,s); if j>low then qs(low,j,s); end; procedure main; var i :longint; begin qs(1,n,1); for i:=1 to n do sum[i]:=int64(size[1,i]); for i:=1 to n do sum[i]:=sum[i]+sum[i-1]; for i:=1 to n do ans[i]:=((i-1)*size[1,i]-sum[i-1])+((sum[n]-sum[i])-(n-i)*size[1,i]); qs(1,n,2); for i:=1 to n do sum[i]:=int64(size[2,i]); for i:=1 to n do sum[i]:=sum[i]+sum[i-1]; for i:=1 to n do ans[i]:=ans[i]+((i-1)*size[2,i]-sum[i-1])+((sum[n]-sum[i])-(n-i)*size[2,i]); print:=maxlongint*maxlongint; for i:=1 to n do print:=min(print,ans[i]); print:=print div 2; writeln(print); end; begin init; main; end.