• Educational Codeforces Round 43 D. Degree Set


    D. Degree Set
    time limit per test
    2 seconds
    memory limit per test
    256 megabytes
    input
    standard input
    output
    standard output

    You are given a sequence of n positive integers d1, d2, ..., dn (d1 < d2 < ... < dn). Your task is to construct an undirected graph such that:

    • there are exactly dn + 1 vertices;
    • there are no self-loops;
    • there are no multiple edges;
    • there are no more than 106 edges;
    • its degree set is equal to d.

    Vertices should be numbered 1 through (dn + 1).

    Degree sequence is an array a with length equal to the number of vertices in a graph such that ai is the number of vertices adjacent to i-th vertex.

    Degree set is a sorted in increasing order sequence of all distinct values from the degree sequence.

    It is guaranteed that there exists such a graph that all the conditions hold, and it contains no more than 106 edges.

    Print the resulting graph.

    Input

    The first line contains one integer n (1 ≤ n ≤ 300) — the size of the degree set.

    The second line contains n integers d1, d2, ..., dn (1 ≤ di ≤ 1000, d1 < d2 < ... < dn) — the degree set.

    Output

    In the first line print one integer m (1 ≤ m ≤ 106) — the number of edges in the resulting graph. It is guaranteed that there exists such a graph that all the conditions hold and it contains no more than 106 edges.

    Each of the next m lines should contain two integers vi and ui (1 ≤ vi, ui ≤ dn + 1) — the description of the i-th edge.

    Examples
    input
    Copy
    3
    2 3 4
    output
    Copy
    8
    3 1
    4 2
    4 5
    2 5
    5 1
    3 2
    2 1
    5 3
    input
    Copy
    3
    1 2 3
    output
    Copy
    4
    1 2
    1 3
    1 4
    2 3

    思路:对于当前度序列(d1, d2, d3, ..., d(k - 1), dk)且总点数为dk + 1,我们取d1个点连接所有的点,取dk - dk - 1个点只连之前这d1个点。此时问题变为d1个度为dk的点,dk - dk -1个度为d1的点,以及待处理度序列
    (d2 - d1, d3 - d1, ..., d(k - 1) - d1),且总点数为dk + 1 - d1 - (dk - d(k - 1)) = d(k - 1) - d1 + 1.刚好是原问题的一个子问题。
    (看到这个官方题解的时候很震撼,分析好久才实现出来,但还是想不到)
     1 #include <iostream>
     2 #include <fstream>
     3 #include <sstream>
     4 #include <cstdlib>
     5 #include <cstdio>
     6 #include <cmath>
     7 #include <string>
     8 #include <cstring>
     9 #include <algorithm>
    10 #include <queue>
    11 #include <stack>
    12 #include <vector>
    13 #include <set>
    14 #include <map>
    15 #include <list>
    16 #include <iomanip>
    17 #include <cctype>
    18 #include <cassert>
    19 #include <bitset>
    20 #include <ctime>
    21 
    22 using namespace std;
    23 
    24 #define pau system("pause")
    25 #define ll long long
    26 #define pii pair<int, int>
    27 #define pb push_back
    28 #define mp make_pair
    29 #define clr(a, x) memset(a, x, sizeof(a))
    30 
    31 const double pi = acos(-1.0);
    32 const int INF = 0x3f3f3f3f;
    33 const int MOD = 1e9 + 7;
    34 const double EPS = 1e-9;
    35 
    36 /*
    37 #include <ext/pb_ds/assoc_container.hpp>
    38 #include <ext/pb_ds/tree_policy.hpp>
    39 
    40 using namespace __gnu_pbds;
    41 tree<pli, null_type, greater<pli>, rb_tree_tag, tree_order_statistics_node_update> T;
    42 */
    43 
    44 int n, d[305];
    45 int p[1015];
    46 struct edge {
    47     int u, v;
    48     edge () {}
    49     edge (int u, int v) : u(u), v(v) {}
    50 } e[1000015];
    51 int tot, nex[1000015], head[1015];
    52 void addEdge(int u, int v) {
    53     e[++tot] = edge(u, v), nex[tot] = head[u], head[u] = tot;
    54 }
    55 int main() {
    56     scanf("%d", &n);
    57     for (int i = 1; i <= n; ++i) {
    58         scanf("%d", &d[i]);
    59     }
    60     for (int i = 1, index2 = d[n] + 1, index1 = 1; i <= n; ++i) {
    61         if (!d[i]) continue;
    62         for (int j = index2; j > index2 - d[i]; --j) {
    63             for (int k = j - 1; k >= index1; --k) {
    64                 addEdge(j, k);
    65             }
    66         }
    67         index2 -= d[i];
    68         index1 += d[n] - d[n - 1];
    69         --n;
    70         for (int j = i + 1; j <= n; ++j) {
    71             d[j] -= d[i];
    72         }
    73     }
    74     printf("%d
    ", tot);
    75     for (int i = 1; i <= tot; ++i) {
    76         printf("%d %d
    ", e[i].u, e[i].v);
    77     }
    78     return 0;
    79 }
    View Code
  • 相关阅读:
    序列化与反序列化
    POST与GET的区别
    block从0到1
    核心动画与UIView的区别
    app标配控制器:UITabBarController
    APP标配控制器:UINavigationController
    一个表中的某字段中所有的数据,复制到另一个表中
    Axure使用
    photoshop使用注意事项
    js 模板引擎 jade使用语法
  • 原文地址:https://www.cnblogs.com/BIGTOM/p/8983554.html
Copyright © 2020-2023  润新知