DreamGrid is learning the LIS (Longest Increasing Subsequence) problem and he needs to find the longest increasing subsequence of a given sequence of length .
Recall that
-
A subsequence of length is a sequence satisfying and .
-
An increasing subsequence is a subsequence satisfying .
DreamGrid defines the helper sequence where indicates the maximum length of the increasing subsequence which ends with . In case you don't know how to derive the helper sequence, he provides you with the following pseudo-code which calculates the helper sequence.
procedure lis_helper(: original sequence)
{Let be the length of the original sequence,
be the -th element in sequence , and
be the -th element in sequence }
for := 1 to
:= 1
for := 1 to ( - 1)
if and
:= + 1
return { is the helper sequence}
DreamGrid has derived the helper sequence using the program, but the original sequence is stolen by BaoBao and is lost! All DreamGrid has in hand now is the helper sequence and two range sequences and indicating that for all .
Please help DreamGrid restore the original sequence which is compatible with the helper sequence and the two range sequences.
Input
There are multiple test cases. The first line of the input contains an integer , indicating the number of test cases. For each test case:
The first line contains an integer (), indicating the length of the original sequence.
The second line contains integers () seperated by a space, indicating the helper sequence.
For the following lines, the -th line contains two integers and (), indicating the range sequences.
It's guaranteed that the original sequence exists, and the sum of of all test cases will not exceed .
Output
For each test case output one line containing integers separated by a space, indicating the original sequence. If there are multiple valid answers, print any of them.
Please, DO NOT print extra spaces at the end of each line, or your solution may be considered incorrect!
Sample Input
4 6 1 2 3 2 4 3 0 5 2 4 3 3 1 2 3 5 1 5 5 1 2 1 3 1 100 200 200 300 200 400 400 500 100 500 7 1 2 3 1 1 4 2 0 3 0 3 0 3 0 3 0 3 0 3 0 3 2 1 1 1 2 2 3
Sample Output
1 2 3 2 5 3 200 300 200 500 200 0 1 2 0 0 3 1 2 2
思路:差分约束
1 #include <iostream> 2 #include <fstream> 3 #include <sstream> 4 #include <cstdlib> 5 #include <cstdio> 6 #include <cmath> 7 #include <string> 8 #include <cstring> 9 #include <algorithm> 10 #include <queue> 11 #include <stack> 12 #include <vector> 13 #include <set> 14 #include <map> 15 #include <list> 16 #include <iomanip> 17 #include <cctype> 18 #include <cassert> 19 #include <bitset> 20 #include <ctime> 21 22 using namespace std; 23 24 #define pau system("pause") 25 #define ll long long 26 #define pii pair<int, int> 27 #define pb push_back 28 #define mp make_pair 29 #define clr(a, x) memset(a, x, sizeof(a)) 30 31 const double pi = acos(-1.0); 32 const int INF = 0x3f3f3f3f; 33 const int MOD = 1e9; 34 const double EPS = 1e-9; 35 36 /* 37 #include <ext/pb_ds/assoc_container.hpp> 38 #include <ext/pb_ds/tree_policy.hpp> 39 40 using namespace __gnu_pbds; 41 tree<pli, null_type, greater<pli>, rb_tree_tag, tree_order_statistics_node_update> T; 42 */ 43 44 int t, n, f[500015], a[500015], b[500015], la[500015]; 45 struct Edge { 46 int u, v; 47 ll w; 48 Edge () {} 49 Edge (int u, int v, ll w) : u(u), v(v), w(w) {} 50 } e[2000015]; 51 int nex[500015], head[500015], tot; 52 void addEdge(int u, int v, int w) { 53 e[++tot] = Edge(u, v, w); 54 nex[tot] = head[u]; 55 head[u] = tot; 56 } 57 void build() { 58 tot = 0; 59 for (int i = 0; i <= n; ++i) head[i] = 0; 60 for (int i = 1; i <= n; ++i) { 61 addEdge(i, 0, -a[i]); 62 addEdge(0, i, b[i]); 63 int x = f[i]; 64 if (la[x]) { 65 addEdge(la[x], i, 0); 66 } 67 la[x] = i; 68 if (x > 1) { 69 addEdge(i, la[x - 1], -1); 70 } 71 } 72 } 73 queue<int> que; 74 bool inque[500015]; 75 ll d[500015]; 76 void spfa() { 77 for (int i = 0; i <= n; ++i) { 78 inque[i] = 0; 79 d[i] = 1e18; 80 } 81 que.push(0); 82 d[0] = 0; 83 inque[0] = 1; 84 while (que.size()) { 85 int x = que.front(); que.pop(); 86 inque[x] = 0; 87 for (int i = head[x]; i; i = nex[i]) { 88 int y = e[i].v; 89 ll w = e[i].w; 90 if (d[y] > d[x] + w) { 91 d[y] = d[x] + w; 92 if (!inque[y]) { 93 que.push(y); 94 inque[y] = 1; 95 } 96 } 97 } 98 } 99 } 100 void print() { 101 for (int i = 1; i < n; ++i) { 102 printf("%lld ", d[i]); 103 } 104 printf("%lld ", d[n]); 105 } 106 int main() { 107 scanf("%d", &t); 108 while (t--) { 109 scanf("%d", &n); 110 for (int i = 1; i <= n; ++i) { 111 la[i] = 0; 112 scanf("%d", &f[i]); 113 } 114 for (int i = 1; i <= n; ++i) scanf("%d%d", &a[i], &b[i]); 115 build(); 116 spfa(); 117 print(); 118 } 119 return 0; 120 }