• Codeforces Round #475 (Div. 1) B. Destruction of a Tree


    B. Destruction of a Tree
    time limit per test
    1 second
    memory limit per test
    256 megabytes
    input
    standard input
    output
    standard output

    You are given a tree (a graph with n vertices and n - 1 edges in which it's possible to reach any vertex from any other vertex using only its edges).

    A vertex can be destroyed if this vertex has even degree. If you destroy a vertex, all edges connected to it are also deleted.

    Destroy all vertices in the given tree or determine that it is impossible.

    Input

    The first line contains integer n (1 ≤ n ≤ 2·105) — number of vertices in a tree.

    The second line contains n integers p1, p2, ..., pn (0 ≤ pi ≤ n). If pi ≠ 0 there is an edge between vertices i and pi. It is guaranteed that the given graph is a tree.

    Output

    If it's possible to destroy all vertices, print "YES" (without quotes), otherwise print "NO" (without quotes).

    If it's possible to destroy all vertices, in the next n lines print the indices of the vertices in order you destroy them. If there are multiple correct answers, print any.

    Examples
    input
    Copy
    5
    0 1 2 1 2
    output
    Copy
    YES
    1
    2
    3
    5
    4
    input
    Copy
    4
    0 1 2 3
    output
    Copy
    NO

    思路:贪心消除最靠近叶子的节点。因为如果最靠近叶子的偶数度节点晚于父节点消除,则父节点消除后此节点度数变为奇数,且其所有子节点度数都为奇数,就再也消除不了了。

     1 #include <iostream>
     2 #include <fstream>
     3 #include <sstream>
     4 #include <cstdlib>
     5 #include <cstdio>
     6 #include <cmath>
     7 #include <string>
     8 #include <cstring>
     9 #include <algorithm>
    10 #include <queue>
    11 #include <stack>
    12 #include <vector>
    13 #include <set>
    14 #include <map>
    15 #include <list>
    16 #include <iomanip>
    17 #include <cctype>
    18 #include <cassert>
    19 #include <bitset>
    20 #include <ctime>
    21 
    22 using namespace std;
    23 
    24 #define pau system("pause")
    25 #define ll long long
    26 #define pii pair<int, int>
    27 #define pb push_back
    28 #define mp make_pair
    29 #define clr(a, x) memset(a, x, sizeof(a))
    30 
    31 const double pi = acos(-1.0);
    32 const int INF = 0x3f3f3f3f;
    33 const int MOD = 1e9 + 7;
    34 const double EPS = 1e-9;
    35 
    36 /*
    37 #include <ext/pb_ds/assoc_container.hpp>
    38 #include <ext/pb_ds/tree_policy.hpp>
    39 
    40 using namespace __gnu_pbds;
    41 tree<pli, null_type, greater<pli>, rb_tree_tag, tree_order_statistics_node_update> T;
    42 */
    43 
    44 int n, p[200015], vis[200015], deg[200015], par[200015];
    45 vector<int> edge[200015];
    46 stack<int> sta;
    47 vector<int> ans;
    48 void dfs2(int x) {
    49     ans.pb(x);
    50     vis[x] = 1;
    51     for (int i = 0; i < edge[x].size(); ++i) {
    52         int y = edge[x][i];
    53         --deg[y];
    54         if (y == par[x]) continue;
    55         if (vis[y]) continue;
    56         if (deg[y] % 2 == 0) {
    57             dfs2(y);
    58         }
    59     }
    60 }
    61 void dfs(int p, int x) {
    62     sta.push(x);
    63     par[x] = p;
    64     for (int i = 0; i < edge[x].size(); ++i) {
    65         int y = edge[x][i];
    66         if (y == p) continue;
    67         dfs(x, y);
    68     }
    69 }
    70 int main() {
    71     scanf("%d", &n);
    72     for (int i = 1; i <= n; ++i) {
    73         scanf("%d", &p[i]);
    74         if (p[i]) {
    75             edge[p[i]].pb(i);
    76             edge[i].pb(p[i]);
    77             ++deg[p[i]];
    78             ++deg[i];
    79         }
    80     }
    81     dfs(0, 1);
    82     while (sta.size()) {
    83         int x = sta.top(); sta.pop();
    84         if (deg[x] % 2 == 0) {
    85             dfs2(x);
    86         }
    87     }
    88     if (ans.size() == n) {
    89         puts("YES");
    90         for (int i = 0; i < ans.size(); ++i) {
    91             printf("%d
    ", ans[i]);
    92         }
    93     } else {
    94         puts("NO");
    95     }
    96     return 0;
    97 }
    View Code
  • 相关阅读:
    ssl握手数据结构
    jQuery基础
    JS语法基础
    Hadoop2.5.2伪分布安装 【图文并茂】
    Hadoop 2.5.2 安装之 系统准备篇(ftp Jdk)
    SQL SERVER2000/2005 (mssql)常用命令
    Hadoop小文件带来的问题以及解决方案
    Hadoop单机模式的安装方法(实验楼版)
    Haddop 安装之 JDK
    HDFS 原理 及 命令
  • 原文地址:https://www.cnblogs.com/BIGTOM/p/8872215.html
Copyright © 2020-2023  润新知