本题知识点:深度优先搜索 + 回溯 + 剪枝 + 字典序
题意是给你一个由 p,q 组成一个矩形的棋盘,让你用马棋在这上面走,是否能一线走完这 p * q 个格子。
关于这条路线是怎么走的,自己动手在纸上模拟一下样例3棋子行走的过程就可以了。
所以这种一线走完的题意可以很清楚地想到是深搜。
我第一次写的时候是没有回溯的,没有回溯的话,就会走回路,提交了一遍WA了,所以这里是不能走回路的,必须要用回溯。
如果都能走到的话,那所走的步数肯定是 p * q,所以这里是判断是否已走完的一个判断。当已达成的话,所得到的路径肯定是答案的路径(至于为什么,我也说不出个好证明来tclquq),得到这个路径后,就要进行剪枝,即中断搜索。
题目输出要求是路径输出要按照字典序输出,所以深搜时的方向一定先要按照字典序方向去走(这里也请大家自己思考一下,怎样走才是最小的字典序)。因为这个字典序差点搞崩我心态,所以大家一定要耐心看清楚题目啊,当思路都没问题时,重新读下题目是很重要的。另外,输出时候还要多一个换行符。
下面请看下代码吧
// POJ 2488
#include<iostream>
#include<cstdio>
#include<vector>
#include<string>
#include<cstring>
using namespace std;
bool take[10][10];
int T, H, W;
int ans_size, temp_size;
string ans[30], temp[30];
bool ok;
//vector<string> temp, ans;
// WA 的行走模式
//int rh[] = { 2, 2, 1, -1, -2, -2, -1, 1 };
//int rw[] = { -1, 1, 2, 2, 1, -1, -2, -2 };
// AC 的行走模式
int rh[] = { -1, 1, -2, 2, -2, 2, -1, 1 };
int rw[] = { -2, -2, -1, -1, 1, 1, 2, 2 };
void dfs(int h, int w){
take[h][w] = true;
if(temp_size == H * W){
ok = true;
ans_size = 0;
for(int i = 0; i < temp_size; i++){
// ans.push_back(temp[i]);
ans[ans_size++] = temp[i];
}
return ;
}
for(int i = 0; i < 8; i++){
int nh = h + rh[i], nw = w + rw[i];
if(1 <= nh && nh <= H && 1 <= nw && nw <= W && !take[nh][nw]){
string a = "";
a += (char)(nw - 1 + 'A');
a += (char)(nh + '0');
temp[temp_size++] = a;
// temp.push_back(a);
dfs(nh, nw);
temp_size--; // 回溯
if(ok) return ; // 剪枝
// temp.pop_back();
}
}
take[h][w] = false;
}
int main()
{
// freopen("test.txt", "r", stdin);
scanf("%d", &T);
for(int k = 1; k <= T; k++) {
ok = false;
memset(take, false, sizeof(take));
// ans.clear();
// temp.clear();
ans_size = temp_size = 0;
scanf("%d %d", &H, &W);
string a = "A1";
temp[temp_size++] = a;
// temp.push_back(a);
dfs(1, 1);
printf("Scenario #%d:
", k);
if(ans_size == H * W){
for(int i = 0; i < ans_size; i++){
cout << ans[i];
} cout << endl;
}
else cout << "impossible
";
cout << endl;
}
return 0;
}