• POJ 1273 Drainage Ditches题解——S.B.S.


    Drainage Ditches

    Time Limit: 1000MS   Memory Limit: 10000K
    Total Submissions: 67823   Accepted: 26209

    Description

    Every time it rains on Farmer John's fields, a pond forms over Bessie's favorite clover patch. This means that the clover is covered by water for awhile and takes quite a long time to regrow. Thus, Farmer John has built a set of drainage ditches so that Bessie's clover patch is never covered in water. Instead, the water is drained to a nearby stream. Being an ace engineer, Farmer John has also installed regulators at the beginning of each ditch, so he can control at what rate water flows into that ditch. 
    Farmer John knows not only how many gallons of water each ditch can transport per minute but also the exact layout of the ditches, which feed out of the pond and into each other and stream in a potentially complex network. 
    Given all this information, determine the maximum rate at which water can be transported out of the pond and into the stream. For any given ditch, water flows in only one direction, but there might be a way that water can flow in a circle. 

    Input

    The input includes several cases. For each case, the first line contains two space-separated integers, N (0 <= N <= 200) and M (2 <= M <= 200). N is the number of ditches that Farmer John has dug. M is the number of intersections points for those ditches. Intersection 1 is the pond. Intersection point M is the stream. Each of the following N lines contains three integers, Si, Ei, and Ci. Si and Ei (1 <= Si, Ei <= M) designate the intersections between which this ditch flows. Water will flow through this ditch from Si to Ei. Ci (0 <= Ci <= 10,000,000) is the maximum rate at which water will flow through the ditch.

    Output

    For each case, output a single integer, the maximum rate at which water may emptied from the pond.

    Sample Input

    5 4
    1 2 40
    1 4 20
    2 4 20
    2 3 30
    3 4 10
    

    Sample Output

    50

    Source

    ——————————我是分割线——————————————————————————————————————————————————
    水题,模板题。
    网络流,最大流。
    增广路算法求解。
    我竟然调了两个钟头......
    正解是DINIC增广,但我直接BFS增广竟然也过了……
      1 #include<iostream>
      2 #include<cstdio>
      3 #include<cstring>
      4 #include<cmath>
      5 #include<algorithm>
      6 #include<cassert>
      7 #include<climits>
      8 #define maxn 210
      9 using namespace std;
     10 void find();
     11 void flow();
     12 void update();
     13 struct Edge
     14 {
     15     int c;
     16     int f;
     17 }edge[maxn][maxn];
     18 int n,m;
     19 int s,t;
     20 int residual[maxn][maxn];
     21 int que[maxn*maxn],head,tail;
     22 int pre[maxn];
     23 bool vis[maxn];
     24 int max_flow,min_flow;
     25 void find()
     26 {
     27     int i,cu;
     28     memset(vis,false,sizeof(vis));
     29     memset(residual,0,sizeof(residual));
     30     memset(pre,0,sizeof(pre));
     31     head=0;que[head]=s;pre[s]=s;vis[s]=true;tail=1;
     32     while(head<tail&&pre[t]==0)
     33     {
     34         cu=que[head];
     35         for(i=1;i<=n;i++)
     36         {
     37             if(vis[i]==false)
     38             {
     39                 if(edge[cu][i].c-edge[cu][i].f>0)
     40                 {
     41                     residual[cu][i]=edge[cu][i].c-edge[cu][i].f;
     42                     pre[i]=cu;que[tail++]=i;vis[i]=true;
     43                 }
     44                 else if(edge[i][cu].f>0)
     45                 {
     46                     residual[cu][i]=edge[i][cu].f;
     47                     pre[i]=cu;que[tail++]=i;vis[i]=true;
     48                 }
     49             }
     50         }
     51         head++;
     52     }
     53 }
     54 void flow()
     55 {
     56     int i=t,j;
     57     if(pre[i]==0)
     58     {
     59         min_flow=0;return;
     60     }
     61     j=0x7fffffff;
     62     while(i!=s)
     63     {
     64         if(residual[pre[i]][i]<j) j=residual[pre[i]][i];
     65         i=pre[i];
     66     }
     67     min_flow=j;
     68 }
     69 void update()
     70 {
     71     int i=t;
     72     if(pre[i]==0) return;
     73     while(i!=s)
     74     {
     75         if(edge[pre[i]][i].c-edge[pre[i]][i].f>0)
     76             edge[pre[i]][i].f+=min_flow;
     77         else if(edge[i][pre[i]].f>0)
     78             edge[pre[i]][i].f+=min_flow;
     79         i=pre[i];    
     80     }
     81 }
     82 void solve()
     83 {
     84     s=1;t=n;
     85     max_flow=0;
     86     while(true)
     87     {
     88         find();flow();
     89         max_flow+=min_flow;
     90         if(min_flow>0) update();
     91         else return;
     92     }
     93 }
     94 int main()
     95 {
     96     std::ios::sync_with_stdio(false);
     97     int i,u,v,c;
     98     while(scanf("%d %d",&m,&n)!=EOF)
     99     {
    100         memset(edge,0,sizeof(edge));
    101         for(i=0;i<m;i++)
    102         {
    103             scanf("%d %d %d",&u,&v,&c);
    104             edge[u][v].c+=c;
    105         }
    106         solve();
    107         printf("%d
    ",max_flow);
    108     }
    109     return 0;
    110 }
    View Code
  • 相关阅读:
    PopupWindow设置动画效果
    android判断是否含有某权限
    每日一更提醒
    利用Pattern和Mather来禁止特殊字符的输入
    Android毛玻璃处理代码(Blur)
    how to render html tag
    数组
    复杂度分析
    书写markdown的利器
    cannot insert multiple commands into a prepared statement问题原因及解决办法
  • 原文地址:https://www.cnblogs.com/AwesomeOrion/p/5536745.html
Copyright © 2020-2023  润新知