这里给出一种基于有限微积分的做法,由于求斯特林数时需要不定模数FNT,于是不太跑的过 ……
先转下降幂
$$egin{align*}sum_{t=0}^{n}{t^qq^t}&=sum_{t=0}^{n}
sum_{p=0}^{q}{qrace p}t^{underline{p}}q^t\&=sum_
{p=0}^{q}{qrace p}sum_{0}^{n+1}{t^underline{p}q^t}
delta tend{align*}$$
令 $u=t^underline{p},Delta v=q^t$
于是有
$Delta u=pt^underline{p-1},v=frac{q^t}{q-1},Ev=
frac{q^{t+1}}{q-1}$
根据 $sum{uDelta v}=uv-sum{EvDelta u}$
因此
$$egin{align*}sum_{0}^{n+1}{t^underline{p}q^t} delta t&=(n+1)^underline{p} imesfrac{q^{n+1}}{q-1}-sum_ {0}^{n+1}{frac{q^{t+1}}{q-1} imes pt^underline {p-1}}delta t\&=frac{1}{q-1}((n+1)^underline{p}q^{n+1}- pqsum_{0}^{n+1}{t^underline{p-1}q^tdelta t}) end{align*}$$
由于
$$egin{align*}sum_{0}^{n+1}t^{underline{0}}q^t
delta t&=frac{q^t}{q-1}Big|^{n+1}_0\&=frac{q^
{n+1}-1}{q-1}end{align*}$$
于是形如 $sum_{t=0}^{n}{t^underline{p}q^t}$ 的式子就可以
$O(p)$ 计算了。
bzoj 3157 国王奇遇记的代码:
#include <bits/stdc++.h> using namespace std; const int N = 2000; const int MOD = 1e9 + 7; int n, m; int S[N][N]; int val[N], sum[N], res; int powi(int a, int b) { if (b < 0) b += MOD - 1; int c = 1; for (; b; b >>= 1, a = 1ll * a * a % MOD) if (b & 1) c = 1ll * c * a % MOD; return c; } int main() { scanf("%d%d", &n, &m); for (int i = 0; i <= m; ++ i) { S[i][0] = 0; S[i][i] = 1; for (int j = 1; j < i; ++ j) S[i][j] = (S[i - 1][j - 1] + 1ll * j * S[i - 1][j]) % MOD; } if (m == 1) return printf("%d ", 1ll * n * (n + 1) / 2 % MOD), 0; val[0] = 1ll * powi(m, n + 1) * powi(m - 1, -1) % MOD; sum[0] = 1ll * (powi(m, n + 1) - 1 + MOD) * powi(m - 1, -1) % MOD; for (int i = 1; i <= m; ++ i) { val[i] = 1ll * val[i - 1] * (n - i + 2) % MOD; sum[i] = (val[i] - 1ll * m * i % MOD * powi(m - 1, -1) % MOD * sum[i - 1] % MOD + MOD) % MOD; } for (int i = 0; i <= m; ++ i) res = (res + 1ll * S[m][i] * sum[i]) % MOD; printf("%d ", res); }