题目:
The n-queens puzzle is the problem of placing n queens on an n×n
chessboard such that no two queens attack each other.
Given an integer n
, return all distinct solutions to the n-queens puzzle.
Each solution contains a distinct board configuration of the n-queens' placement, where 'Q'
and '.'
both indicate a queen and an empty space respectively.
Example
There exist two distinct solutions to the 4-queens puzzle:
[
// Solution 1
[".Q..",
"...Q",
"Q...",
"..Q."
],
// Solution 2
["..Q.",
"Q...",
"...Q",
".Q.."
]
]
题解:
此题需要注意的是对角线因素,不仅不能对角线相邻,而且不能在一条对角线上,中间隔着一个也不行!刚开始没注意,花了一个多小时才明白过来。。。
Solution 1 ()
class Solution { public: void dfs(vector<vector<string>>& res, vector<string>& v, int n, vector<int>& pos, int row) { if(row >= n) { res.push_back(v); return; } for(int col=0; col<n; ++col) { if (!isValid(pos, row, col)) { continue; } v[row][col] = 'Q'; pos[row] = col; dfs(res, v, n, pos, row + 1); pos[row] = -1; v[row][col] = '.'; } } bool isValid(vector<int>& pos, int row, int col) { for (int i = 0; i < row; ++i) { if (pos[i] == col || abs(row - i) == abs(col - pos[i])) { return false; } } return true; } vector<vector<string>> solveNQueens(int n) { vector<vector<string>> res; vector<string> v(n, string(n, '.')); vector<int> pos(n, -1); dfs(res, v, n, pos, 0); return res; } };
Solution 1.2 () from here
class Solution { private: vector<vector<string> > res; public: vector<vector<string> > solveNQueens(int n) { vector<string>cur(n, string(n,'.')); helper(cur, 0); return res; } void helper(vector<string> &cur, int row) { if(row == cur.size()) { res.push_back(cur); return; } for(int col = 0; col < cur.size(); col++) if(isValid(cur, row, col)) { cur[row][col] = 'Q'; helper(cur, row+1); cur[row][col] = '.'; } } //判断在cur[row][col]位置放一个皇后,是否是合法的状态 //已经保证了每行一个皇后,只需要判断列是否合法以及对角线是否合法。 bool isValid(vector<string> &cur, int row, int col) { //列 for(int i = 0; i < row; i++) if(cur[i][col] == 'Q')return false; //右对角线(只需要判断对角线上半部分,因为后面的行还没有开始放置) for(int i = row-1, j=col-1; i >= 0 && j >= 0; i--,j--) if(cur[i][j] == 'Q')return false; //左对角线(只需要判断对角线上半部分,因为后面的行还没有开始放置) for(int i = row-1, j=col+1; i >= 0 && j < cur.size(); i--,j++) if(cur[i][j] == 'Q')return false; return true; } };
Solution 1.3 ()
class Solution2 { public: std::vector<std::vector<std::string> > solveNQueens(int n) { std::vector<std::vector<std::string> > res; std::vector<std::string> nQueens(n, std::string(n, '.')); solveNQueens(res, nQueens, 0, n); return res; } private: void solveNQueens(std::vector<std::vector<std::string> > &res, std::vector<std::string> &nQueens, int row, int &n) { if (row == n) { res.push_back(nQueens); return; } for (int col = 0; col != n; ++col) if (isValid(nQueens, row, col, n)) { nQueens[row][col] = 'Q'; solveNQueens(res, nQueens, row + 1, n); nQueens[row][col] = '.'; } } bool isValid(std::vector<std::string> &nQueens, int row, int col, int &n) { //check if the column had a queen before. for (int i = 0; i != row; ++i) if (nQueens[i][col] == 'Q') return false; //check if the 45° diagonal had a queen before. for (int i = row - 1, j = col - 1; i >= 0 && j >= 0; --i, --j) if (nQueens[i][j] == 'Q') return false; //check if the 135° diagonal had a queen before. for (int i = row - 1, j = col + 1; i >= 0 && j < n; --i, ++j) if (nQueens[i][j] == 'Q') return false; return true; } };